全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多元统计分析对重庆人均GDP的分析与预测
Analysis and Prediction of Chongqing’s per Capita GDP Based on Multivariate Statistical Analysis

DOI: 10.12677/sa.2024.134119, PP. 1168-1178

Keywords: 人均GDP,多元统计分析方法,描述统计分析,时间序列分析,ARIMA模型
Per Capita GDP
, Multivariate Statistical Analysis Methods, Descriptive Statistical Analysis, Time Series Analysis, ARIMA Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

人均GDP是衡量一个国家或地区经济状况的有效指标,及时了解人均GDP的发展动态对一个国家或地区至关重要。本文通过多元统计分析方法,对重庆市的人均GDP进行描述统计分析及时间序列分析。首先,通过描述统计分析考察重庆直辖以来人均GDP的发展趋势、产业结构变化情况及与优势省市对比,找出发展不充分的行业及人口结构的劣势;其次,通过时间序列分析对重庆市1998年到2022年的人均GDP进行平稳化处理和纯随机性检验,确定ARIMA(0, 2, 2)模型,预测重庆市未来5年人均GDP;最后,根据重庆市人均GDP的发展特征及预测结果提出建议。
Per capita GDP is an effective indicator to measure the economic status of a country or region, and it is crucial to keep abreast of the development dynamics of per capita GDP for a country or region. This article utilizes multivariate statistical analysis methods to conduct descriptive statistical analysis and time series analysis on Chongqing’s per capita GDP. Firstly, through descriptive statistical analysis, the development trend of per capita GDP since Chongqing’s establishment as a municipality, changes in industrial structure, and comparisons with advantageous provinces and cities are examined to identify underdeveloped industries and disadvantages in population structure. Secondly, through time series analysis, the stabilization processing and pure randomness test of Chongqing’s per capita GDP from 1998 to 2022 are conducted to determine the ARIMA(0, 2, 2) model and predict Chongqing’s per capita GDP for the next five years. Finally, based on the development characteristics and prediction results of Chongqing’s per capita GDP, suggestions are put forward.

References

[1]  我国GDP居世界第七位[J]. 思想理论教育导刊, 1999(1): 22.
[2]  金鑫, 王蕾, 高峰, 等. GDP的时间序列模型的建立及应用——以兰州市为例[J]. 常州工学院学报, 2011, 24(Z1): 67-71.
[3]  樊怡囡. 陕西省人均GDP的预测——基于时序模型与灰色模型的对比研究[J]. 西部皮革, 2018, 40(14): 41.
[4]  孙敬敬. 基于时间序列的郑州市人均生产总值的预测[J]. 中小企业管理与科技(上旬刊), 2021(4): 130-131.
[5]  国家统计局. 中国统计年鉴2023 [M]. 北京: 中国统计出版社, 2023.
[6]  高泽浩. 我国人口老龄化对经济增长的影响研究[D]: [硕士学位论文]. 南京: 南京财经大学, 2023.
[7]  C.查特菲尔德, 著. 时间序列分析引论(第二版) [M]. 骆振华, 译. 厦门: 厦门大学出版社, 1987.
[8]  Granger, C.W.J. and Swanson, N. (1996) Future Developments in the Study of Cointegrated Variables. Oxford Bulletin of Economics and Statistics, 58, 537-553.
https://doi.org/10.1111/j.1468-0084.1996.mp58003007.x
[9]  Box, G.E.P., Jenkins, G.M., Reinsel, G.C., 著. 时间序列分析预测与控制(第三版) [M]. 顾岚, 译. 北京: 中国统计出版社, 1997.
[10]  王燕. 时间序列分析: 基于R [M]. 北京: 中国人民大学出版社, 2015.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133