|
HIF-1α在高原低氧心肌损伤中的研究进展
|
Abstract:
高原心脏损伤(HACI)是由于高原缺氧引起的常见组织损伤之一,严重时可危及生命。研究表明,缺氧诱导因子-1α (HIF-1α)是一种氧敏感转录因子,在缺氧条件下显著增高,介导了机体对缺氧的适应性代谢反应,通过改善线粒体功能,降低细胞氧化应激反应,激活心肌细胞缺氧信号转导通路和下游基因,在HACI中起关键作用。HIF-1α的相关生物学研究显著提高了对氧稳态的理解,本文就HIF-1α在HACI中的作用及其相关作用机制进行综述,期望为治疗HACI提供部分证据。
High altitude cardiac injury (HACI) is one of the common tissue injuries caused by high altitude hypoxia, which can be life-threatening in severe cases. Hypoxia-inducible factor-1α (HIF-1α) has been shown to be an oxygen-sensitive transcription factor that increases markedly in hypoxic conditions, mediates the adaptive metabolic response to hypoxia in the body, and plays a key role in HACI by improving mitochondrial function, decreasing cellular oxidative stress responses, activating cardiomyocyte hypoxic signaling pathways and downstream genes. Relevant biological studies on HIF-1α have significantly improved the understanding of oxygen homeostasis, and this article reviews the role of HIF-1α in HACI and its associated mechanisms of action, with the hope of providing some evidence for the treatment of HACI.
[1] | Parati, G., Agostoni, P., Basnyat, B., Bilo, G., Brugger, H., Coca, A., et al. (2018) Clinical Recommendations for High Altitude Exposure of Individuals with Pre-Existing Cardiovascular Conditions. European Heart Journal, 39, 1546-1554. https://doi.org/10.1093/eurheartj/ehx720 |
[2] | Park, J.H., Moon, S., Kang, D.H., Um, H.J., Kang, S., Kim, J.Y., et al. (2018) Diquafosol Sodium Inhibits Apoptosis and Inflammation of Corneal Epithelial Cells via Activation of Erk1/2 and RSK: In Vitro and in Vivo Dry Eye Model. Investigative Opthalmology & Visual Science, 59, 5108-5115. https://doi.org/10.1167/iovs.17-22925 |
[3] | Meier, D., Collet, T., Locatelli, I., Cornuz, J., Kayser, B., Simel, D.L., et al. (2017) Does This Patient Have Acute Mountain Sickness? The Rational Clinical Examination Systematic Review. JAMA, 318, 1810-1819. https://doi.org/10.1001/jama.2017.16192 |
[4] | Rathor, R., Suryakumar, G. and Singh, S.N. (2021) Diet and Redox State in Maintaining Skeletal Muscle Health and Performance at High Altitude. Free Radical Biology and Medicine, 174, 305-320. https://doi.org/10.1016/j.freeradbiomed.2021.07.024 |
[5] | Bärtsch, P. and Gibbs, J.S.R. (2007) Effect of Altitude on the Heart and the Lungs. Circulation, 116, 2191-2202. https://doi.org/10.1161/circulationaha.106.650796 |
[6] | Maufrais, C., Rupp, T., Bouzat, P., Doucende, G., Verges, S., Nottin, S., et al. (2016) Heart Mechanics at High Altitude: 6 Days on the Top of Europe. European Heart Journal—Cardiovascular Imaging, 18, 1369-1377. https://doi.org/10.1093/ehjci/jew286 |
[7] | Guo, W., Bian, S., Zhang, J., Li, Q., Yu, J., Chen, J., et al. (2016) Physiological and Psychological Factors Associated with Onset of High-Altitude Headache in Chinese Men Upon Acute High-Altitude Exposure at 3700 M. Cephalalgia, 37, 336-347. https://doi.org/10.1177/0333102416646761 |
[8] | Zila-Velasque, J.P., Grados-Espinoza, P., Morán-Mariños, C., Morales Pocco, K.O., Capcha-Jimenez, U.S. and Ortiz-Benique, Z.N. (2023) Adaptation and Altitude Sickness: A 40-Year Bibliometric Analysis and Collaborative Networks. Frontiers in Public Health, 11, Article 1069212. https://doi.org/10.3389/fpubh.2023.1069212 |
[9] | Woods, D., Boos, C. and Roberts, P. (2011) Cardiac Arrhythmias at High Altitude. Journal of the Royal Army Medical Corps, 157, 59-62. https://doi.org/10.1136/jramc-157-01-10 |
[10] | Wang, Q., Hu, L., Hu, Y., Gong, G., Tan, H., Deng, L., et al. (2016) Carbon Monoxide-Saturated Hemoglobin-Based Oxygen Carriers Attenuate High-Altitude-Induced Cardiac Injury by Amelioration of the Inflammation Response and Mitochondrial Oxidative Damage. Cardiology, 136, 180-191. https://doi.org/10.1159/000448652 |
[11] | Lu, H., Zhang, H. and Jiang, Y. (2020) Methazolamide in High-Altitude Illnesses. European Journal of Pharmaceutical Sciences, 148, Article ID: 105326. https://doi.org/10.1016/j.ejps.2020.105326 |
[12] | 苏锦松, 洪道鑫, 文检, 等. 青藏高原珍稀濒危药用植物大花红景天的资源调查[J]. 中药材, 2017, 40(5): 1046-1050. |
[13] | Kung-Chun Chiu, D., Pui-Wah Tse, A., Law, C., Ming-Jing Xu, I., Lee, D., Chen, M., et al. (2019) Hypoxia Regulates the Mitochondrial Activity of Hepatocellular Carcinoma Cells through HIF/HEY1/PINK1 Pathway. Cell Death & Disease, 10, Article No. 934. https://doi.org/10.1038/s41419-019-2155-3 |
[14] | Loboda, A., Jozkowicz, A. and Dulak, J. (2012) HIF-1 versus HIF-2—Is One More Important than the Other? Vascular Pharmacology, 56, 245-251. https://doi.org/10.1016/j.vph.2012.02.006 |
[15] | Jaakkola, P., Mole, D.R., Tian, Y., Wilson, M.I., Gielbert, J., Gaskell, S.J., et al. (2001) Targeting of HIF-α to the Von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation. Science, 292, 468-472. https://doi.org/10.1126/science.1059796 |
[16] | Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., et al. (2001) HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing. Science, 292, 464-468. https://doi.org/10.1126/science.1059817 |
[17] | Knutson, A.K., Williams, A.L., Boisvert, W.A. and Shohet, R.V. (2021) HIF in the Heart: Development, Metabolism, Ischemia, and Atherosclerosis. Journal of Clinical Investigation, 131, e137557. https://doi.org/10.1172/jci137557 |
[18] | Choudhry, H. and Harris, A.L. (2018) Advances in Hypoxia-Inducible Factor Biology. Cell Metabolism, 27, 281-298. https://doi.org/10.1016/j.cmet.2017.10.005 |
[19] | Downes, N.L., Laham-Karam, N., Kaikkonen, M.U. and Ylä-Herttuala, S. (2018) Differential But Complementary HIF1α and HIF2α Transcriptional Regulation. Molecular Therapy, 26, 1735-1745. https://doi.org/10.1016/j.ymthe.2018.05.004 |
[20] | Ramakrishnan, S.K., Taylor, M., Qu, A., Ahn, S., Suresh, M.V., Raghavendran, K., et al. (2014) Loss of Von Hippel-Lindau Protein (VHL) Increases Systemic Cholesterol Levels through Targeting Hypoxia-Inducible Factor 2α and Regulation of Bile Acid Homeostasis. Molecular and Cellular Biology, 34, 1208-1220. https://doi.org/10.1128/mcb.01441-13 |
[21] | Fukushima, K., Kitamura, S., Tsuji, K. and Wada, J. (2021) Sodium-Glucose Cotransporter 2 Inhibitors Work as a “Regulator” of Autophagic Activity in Overnutrition Diseases. Frontiers in Pharmacology, 12, Article 761842. https://doi.org/10.3389/fphar.2021.761842 |
[22] | Semenza, G.L. (2012) Hypoxia-Inducible Factors in Physiology and Medicine. Cell, 148, 399-408. https://doi.org/10.1016/j.cell.2012.01.021 |
[23] | Hu, Y., Zhao, Y., Li, P., Lu, H., Li, H. and Ge, J. (2023) Hypoxia and Panvascular Diseases: Exploring the Role of Hypoxia-Inducible Factors in Vascular Smooth Muscle Cells under Panvascular Pathologies. Science Bulletin, 68, 1954-1974. https://doi.org/10.1016/j.scib.2023.07.032 |
[24] | Wang, G.L. and Semenza, G.L. (1995) Purification and Characterization of Hypoxia-Inducible Factor 1. Journal of Biological Chemistry, 270, 1230-1237. https://doi.org/10.1074/jbc.270.3.1230 |
[25] | Wang, G.L., Jiang, B.H., Rue, E.A. and Semenza, G.L. (1995) Hypoxia-inducible Factor 1 Is a Basic-Helix-Loop-Helix-Pas Heterodimer Regulated by Cellular O2 Tension. Proceedings of the National Academy of Sciences of the United States of America, 92, 5510-5514. https://doi.org/10.1073/pnas.92.12.5510 |
[26] | Forsythe, J.A., Jiang, B., Iyer, N.V., Agani, F., Leung, S.W., Koos, R.D., et al. (1996) Activation of Vascular Endothelial Growth Factor Gene Transcription by Hypoxia-Inducible Factor 1. Molecular and Cellular Biology, 16, 4604-4613. https://doi.org/10.1128/mcb.16.9.4604 |
[27] | Zhao, Y., Xiong, W., Li, C., Zhao, R., Lu, H., Song, S., et al. (2023) Hypoxia-Induced Signaling in the Cardiovascular System: Pathogenesis and Therapeutic Targets. Signal Transduction and Targeted Therapy, 8, Article No. 431. https://doi.org/10.1038/s41392-023-01652-9 |
[28] | Iyer, N.V., Kotch, L.E., Agani, F., Leung, S.W., Laughner, E., Wenger, R.H., et al. (1998) Cellular and Developmental Control of O2 Homeostasis by Hypoxia-Inducible Factor 1α. Genes & Development, 12, 149-162. https://doi.org/10.1101/gad.12.2.149 |
[29] | Rustamova, Y. and Lombardi, M. (2020) Ischemic Heart Disease. In: Rustamova, Y. and Lombardi, M., Eds., Cardiac Magnetic Resonance Atlas, Springer, 63-91. https://doi.org/10.1007/978-3-030-41830-4_3 |
[30] | Savla, J.J., Levine, B.D. and Sadek, H.A. (2018) The Effect of Hypoxia on Cardiovascular Disease: Friend or Foe? High Altitude Medicine & Biology, 19, 124-130. https://doi.org/10.1089/ham.2018.0044 |
[31] | Li, X., Wang, W., Li, M., Liu, T., Tian, X. and Wu, L. (2022) Effects of Altitude and Duration of Differing Levels of Hypoxic Exposure on Hypoxia-Inducible Factor-1α in Rat Tissues. High Altitude Medicine & Biology, 23, 173-184. https://doi.org/10.1089/ham.2021.0100 |
[32] | Hashmi, S. and Al-Salam, S. (2012) Hypoxia-Inducible Factor-1 α in the Heart. Cardiology in Review, 20, 268-273. https://doi.org/10.1097/crd.0b013e31826287f6 |
[33] | Singh, M., Thomas, P., Shukla, D., Tulsawani, R., Saxena, S. and Bansal, A. (2013) Effect of Subchronic Hypobaric Hypoxia on Oxidative Stress in Rat Heart. Applied Biochemistry and Biotechnology, 169, 2405-2419. https://doi.org/10.1007/s12010-013-0141-2 |
[34] | Virzì, G.M., Clementi, A. and Ronco, C. (2016) Cellular Apoptosis in the Cardiorenal Axis. Heart Failure Reviews, 21, 177-189. https://doi.org/10.1007/s10741-016-9534-y |
[35] | Xuan, Y., Liu, S., Li, Y., Dong, J., Luo, J., Liu, T., et al. (2017) Short-Term Vagus Nerve Stimulation Reduces Myocardial Apoptosis by Downregulating Microrna-205 in Rats with Chronic Heart Failure. Molecular Medicine Reports, 16, 5847-5854. https://doi.org/10.3892/mmr.2017.7344 |
[36] | Dong, W., Gao, D., Lin, H., Zhang, X., Li, N. and Li, F. (2008) New Insights into Mechanism for the Effect of Resveratrol Preconditioning against Cerebral Ischemic Stroke: Possible Role of Matrix Metalloprotease-9. Medical Hypotheses, 70, 52-55. https://doi.org/10.1016/j.mehy.2007.04.033 |
[37] | Ní Chróinín, D., Asplund, K., Åsberg, S., Callaly, E., Cuadrado-Godia, E., Díez-Tejedor, E., et al. (2013) Statin Therapy and Outcome after Ischemic Stroke: Systematic Review and Meta-Analysis of Observational Studies and Randomized Trials. Stroke, 44, 448-456. https://doi.org/10.1161/strokeaha.112.668277 |
[38] | Chen, L., Luo, S., Yan, L. and Zhao, W. (2014) A Systematic Review of Closure versus Medical Therapy for Preventing Recurrent Stroke in Patients with Patent Foramen Ovale and Cryptogenic Stroke or Transient Ischemic Attack. Journal of the Neurological Sciences, 337, 3-7. https://doi.org/10.1016/j.jns.2013.11.027 |
[39] | Zhang, Y., Liu, D., Hu, H., Zhang, P., Xie, R. and Cui, W. (2019) Hif-1α/BNIP3 Signaling Pathway-Induced-Autophagy Plays Protective Role during Myocardial Ischemia-Reperfusion Injury. Biomedicine & Pharmacotherapy, 120, Article ID: 109464. https://doi.org/10.1016/j.biopha.2019.109464 |
[40] | Feng, J., Zhan, J. and Ma, S. (2021) LRG1 Promotes Hypoxia-Induced Cardiomyocyte Apoptosis and Autophagy by Regulating Hypoxia-Inducible Factor-1α. Bioengineered, 12, 8897-8907. https://doi.org/10.1080/21655979.2021.1988368 |
[41] | Yu, H., Chen, B. and Ren, Q. (2019) Baicalin Relieves Hypoxia-Aroused H9c2 Cell Apoptosis by Activating Nrf2/HO-1-Mediated HIF1α/BNIP3 Pathway. Artificial Cells, Nanomedicine, and Biotechnology, 47, 3657-3663. https://doi.org/10.1080/21691401.2019.1657879 |
[42] | Pham, K., Parikh, K. and Heinrich, E.C. (2021) Hypoxia and Inflammation: Insights from High-Altitude Physiology. Frontiers in Physiology, 12, Article 676782. https://doi.org/10.3389/fphys.2021.676782 |
[43] | Lee, J.W., Ko, J., Ju, C. and Eltzschig, H.K. (2019) Hypoxia Signaling in Human Diseases and Therapeutic Targets. Experimental & Molecular Medicine, 51, 1-13. https://doi.org/10.1038/s12276-019-0235-1 |
[44] | Li, H., Zhou, Y., Li, L., Li, S., Long, D., Chen, X., et al. (2019) HIF-1α Protects against Oxidative Stress by Directly Targeting Mitochondria. Redox Biology, 25, Article ID: 101109. https://doi.org/10.1016/j.redox.2019.101109 |
[45] | Zhu, N., Li, J., Li, Y., Zhang, Y., Du, Q., Hao, P., et al. (2020) Berberine Protects against Simulated Ischemia/Reperfusion Injury-Induced H9C2 Cardiomyocytes Apoptosis in Vitro and Myocardial Ischemia/Reperfusion-Induced Apoptosis in Vivo by Regulating the Mitophagy-Mediated HIF-1α/BNIP3 Pathway. Frontiers in Pharmacology, 11, Article 367. https://doi.org/10.3389/fphar.2020.00367 |
[46] | Tormos, K.V. and Chandel, N.S. (2010) Inter‐Connection between Mitochondria and HIFs. Journal of Cellular and Molecular Medicine, 14, 795-804. https://doi.org/10.1111/j.1582-4934.2010.01031.x |