|
新疆伊犁盆地燃煤电厂天然放射性水平评价
|
Abstract:
文章对新疆伊犁6家燃煤电厂的原煤、煤渣、煤灰及周围土壤中的天然放射性核素开展测量。结果表明:2家燃煤电厂煤渣、煤灰中天然放射性核素比活度大于1000 Bq/kg,煤渣和煤灰中天然放射性核素富集因子均值分别为1.5~6.3、4.1~16.7。原煤及周围土壤中的天然放射性核素比活度均处于本底水平。因此,建议对用作建筑材料的煤渣和煤灰进行放射性检测,严格控制高比活度的煤渣和煤灰在建筑材料中的比例。
This article conducts a survey on six coal-fired power plants in Ili, Xinjiang, and analyzes and measures natural radioactive nuclides in raw coal, coal slag, coal ash, and surrounding soil. The results showed that the natural radioactive nuclide specific activity in the coal slag and coal ash of two coal-fired power plants was greater than 1000 Bq/kg, and the natural radioactive nuclide specific activity in the raw coal and the surrounding soil was at the standard level. Natural radioactive nuclides exhibit varying degrees of enrichment in coal slag and coal ash, with average enrichment index ranging from 1.5~6.3 and 4.1~16.7, respectively. Therefore, it is recommended that when cinder and coal ash are used as building materials, radioactivity testing is carried out to ensure that the radioactivity level in building materials is lower than the national standard limit.
[1] | 盛明伟. 新疆褐煤辐射水平测量与分析[D]: [硕士学位论文]. 衡阳: 南华大学, 2010. |
[2] | 生态环境部辐射环境监测技术中心. HJ61-2021辐射环境监测技术规范[S]. |
[3] | 中华人民共和国国家卫生健康委员会. GB/T11713-2015高纯锗γ能谱分析通用方法[S]. 2015. |
[4] | 生态环境部. 伴生放射性矿开发利用企业辐射环境监测及信息公开办法(试行) [S]. 2018. |
[5] | 姚海云, 王欣刚, 孙亚敏, 等. 浙江省燃煤电厂原煤、煤渣和煤灰中天然放射性水平调查分析[J]. 能源环境保护, 2020, 34(5): 65-70. |
[6] | 马振珠, 韩颖, 王南萍, 徐翠华, 王玉和, 李增宽, 张永贵. GB6566-2010建筑材料放射性核素限量[S]. 2010. |
[7] | 李臻琦. 南昌市常用建筑材料放射性测定分析与研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2022. |
[8] | 孙静. 包钢固体废物综合利用与污染防治对策研究[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2006. |