Renewable energies are highly dependent on local weather conditions, with photovoltaic energy being particularly affected by intermittent clouds. Anticipating the impact of cloud shadows on power plants is crucial, as clouds can cause partial shading, excessive irradiation, and operational issues. This study focuses on analyzing cloud tracking methods for short-term forecasts, aiming to mitigate such impacts. We conducted a systematic literature review, highlighting the most significant articles on cloud tracking from ground-based observations. We explore both traditional image processing techniques and advances in deep learning models. Additionally, we discuss current challenges and future research directions in this rapidly evolving field, aiming to provide a comprehensive overview of the state of the art and identify opportunities for significant advancements in the next generation of cloud tracking systems based on computer vision and deep learning.
References
[1]
Al-lahham, A., Theeb, O., Elalem, K., Alshawi, T., & Alshebeili, S. (2020). Sky Imager-Based Forecast of Solar Irradiance Using Machine Learning. Electronics,9, Article No. 1700. https://doi.org/10.3390/electronics9101700
[2]
Ao, J. O. Z., Xuer, S. T., Salinas, S. V., & Chin, L. S. (2019). A Short Term Cloud Tracking Model Based on the Bruhn Optical Flow Method. In 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 7598-7601). IEEE. https://ieeexplore.ieee.org/abstract/document/8899104
[3]
Arrais, J. M., Martins, B. J., Chaves, T. Z. L., Cerentini, A., Netto, S. L. M., & von Wangenheim, A. (2022). Systematic Literature Review on Ground-Based Cloud Tracking Methods for Nowcasting and Short-Term Forecasting.
[4]
Arya, P. S. (2001). Introduction to Micrometeorology. Elsevier.
[5]
Bel, G., & Bandi, M. M. (2019). Geographic Dependence of the Solar Irradiance Spectrum at Intermediate to High Frequencies. PhysicalReviewApplied,12, Article ID: 024032. https://doi.org/10.1103/physrevapplied.12.024032
[6]
Bernecker, D., Riess, C., Angelopoulou, E., & Hornegger, J. (2014). Continuous Short-Term Irradiance Forecasts Using Sky Images. SolarEnergy,110, 303-315. https://doi.org/10.1016/j.solener.2014.09.005
[7]
Bojek, P. (2022). Solar PV Report 2022. Tech. Rep., International Energy Agency-IEA. https://www.iea.org/reports/solar-pv
[8]
Bone, V., Pidgeon, J., Kearney, M., & Veeraragavan, A. (2018). Intra-Hour Direct Normal Irradiance Forecasting through Adaptive Clear-Sky Modelling and Cloud Tracking. SolarEnergy,159, 852-867. https://doi.org/10.1016/j.solener.2017.10.037
[9]
Bruhn, A., Weickert, J., & Schnörr, C. (2005). Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods. InternationalJournalofComputerVision,61, 211-231. https://doi.org/10.1023/b:visi.0000045324.43199.43
[10]
Cai, C., & Aliprantis, D. C. (2013). Cumulus Cloud Shadow Model for Analysis of Power Systems with Photovoltaics. IEEETransactionsonPowerSystems,28, 4496-4506. https://doi.org/10.1109/tpwrs.2013.2278685
[11]
Caldas, M., & Alonso-Suárez, R. (2019). Very Short-Term Solar Irradiance Forecast Using All-Sky Imaging and Real-Time Irradiance Measurements. Renewable Energy, 143, 1643-1658. https://doi.org/10.1016/j.renene.2019.05.069
[12]
Canadillas, D., Gonzalez-Diaz, B., Rodriguez, J., Rodriguez, J., & Guerrero-Lemus, R. (2018). A Low-Cost Two-Camera Sky-Imager Ground-Based Intra-Hour Solar Forecasting System with Cloud Base Height Estimation Capabilities Working in a Smart Grid. In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) (pp. 2282-2287). IEEE. https://doi.org/10.1109/pvsc.2018.8548294
[13]
Cazorla, A., Olmo, F. J., & Alados-Arboledas, L. (2008). Development of a Sky Imager for Cloud Cover Assessment. JournaloftheOpticalSocietyofAmericaA,25, 29-39. https://doi.org/10.1364/josaa.25.000029
[14]
Cervantes, M., Krishnaswami, H., Richardson, W., & Vega, R. (2016). Utilization of Low Cost, Sky-Imaging Technology for Irradiance Forecasting of Distributed Solar Generation. In 2016 IEEE Green Technologies Conference (GreenTech) (pp. 142-146). IEEE. https://doi.org/10.1109/greentech.2016.33
[15]
Chang, M., Yao, Y., Li, G., Tong, Y., & Tu, P. (2017). Cloud Tracking for Solar Irradiance Prediction. In 2017 IEEE International Conference on Image Processing (ICIP) (pp. 4387-4391). IEEE. https://doi.org/10.1109/icip.2017.8297111
[16]
Chen, S., Li, P., Brady, D., & Lehman, B. (2010). The Impact of Irradiance Time Behaviors on Inverter Sizing and Design. In 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics (COMPEL) (pp. 1-5). IEEE. https://doi.org/10.1109/compel.2010.5562387
[17]
Cheng, H. (2017). Cloud Tracking Using Clusters of Feature Points for Accurate Solar Irradiance Nowcasting. RenewableEnergy,104, 281-289. https://doi.org/10.1016/j.renene.2016.12.023
[18]
Cheng, H., & Lin, C. (2017). Cloud Detection in All-Sky Images via Multi-Scale Neighborhood Features and Multiple Supervised Learning Techniques. AtmosphericMeasurementTechniques,10, 199-208. https://doi.org/10.5194/amt-10-199-2017
[19]
Chow, C. W., Belongie, S., & Kleissl, J. (2015). Cloud Motion and Stability Estimation for Intra-Hour Solar Forecasting. SolarEnergy,115, 645-655. https://doi.org/10.1016/j.solener.2015.03.030
[20]
Chow, C. W., Urquhart, B., Lave, M., Dominguez, A., Kleissl, J., Shields, J. et al. (2011). Intra-Hour Forecasting with a Total Sky Imager at the UC San Diego Solar Energy Testbed. SolarEnergy,85, 2881-2893. https://doi.org/10.1016/j.solener.2011.08.025
[21]
Denholm, P., & Margolis, R. M. (2007). Evaluating the Limits of Solar Photovoltaics (PV) in Traditional Electric Power Systems. EnergyPolicy,35, 2852-2861. https://doi.org/10.1016/j.enpol.2006.10.014
[22]
Dissawa, D. M. L. H., Ekanayake, M. P. B., Godaliyadda, G. M. R. I., Ekanayake, J. B., & Agalgaonkar, A. P. (2017). Cloud Motion Tracking for Short-Term On-Site Cloud Coverage Prediction. In 2017 Seventeenth International Conference on Advances in ICT for Emerging Regions (ICTer) (pp. 1-6). IEEE. https://doi.org/10.1109/icter.2017.8257803
[23]
do Nascimento, L. R., de Souza Viana, T., Campos, R. A., & Rüther, R. (2019). Extreme Solar Overirradiance Events: Occurrence and Impacts on Utility-Scale Photovoltaic Power Plants in Brazil. SolarEnergy,186, 370-381. https://doi.org/10.1016/j.solener.2019.05.008
[24]
Duffie, J. A., & Beckman, W. A. (2006). Solar Engineering of Thermal Process (3rd ed.). John Willey & Sons Inc.
[25]
El Jaouhari, Z., Zaz, Y., & Masmoudi, L. (2015). Cloud Tracking from Whole-Sky Ground-Based Images. In 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC) (pp. 1-5). IEEE. https://doi.org/10.1109/irsec.2015.7455105
[26]
Eslik, A. H., Akarslan, E., & Hocaoglu, F. O. (2021). Cloud Motion Estimation with ANN for Solar Radiation Forecasting. In 2021 International Congress of Advanced Technology and Engineering (ICOTEN) (pp. 1-5). IEEE. https://doi.org/10.1109/icoten52080.2021.9493523
[27]
Eşlik, A. H., Akarslan, E., & Hocaoğlu, F. O. (2022). Short-Term Solar Radiation Forecasting with a Novel Image Processing-Based Deep Learning Approach. RenewableEnergy,200, 1490-1505. https://doi.org/10.1016/j.renene.2022.10.063
[28]
Fouad, M. M., Shihata, L. A., & Morgan, E. I. (2017). An Integrated Review of Factors Influencing the Perfomance of Photovoltaic Panels. RenewableandSustainableEnergyReviews,80, 1499-1511. https://doi.org/10.1016/j.rser.2017.05.141
[29]
Fu, R., Remo, T. W., Margolis, R. M. (2018). 2018 U.S. Utility-Scale Photovoltaics Plus-Energy Storage System Costs Benchmark.
[30]
Golestaneh, F., Pinson, P., & Gooi, H. B. (2016). Very Short-Term Nonparametric Probabilistic Forecasting of Renewable Energy Generation—With Application to Solar Energy. IEEETransactionsonPowerSystems,31, 3850-3863. https://doi.org/10.1109/tpwrs.2015.2502423
[31]
Gonzalez-Moreno, A., Marcos, J., de la Parra, I., & Marroyo, L. (2022). A PV Ramp-Rate Control Strategy to Extend Battery Lifespan Using Forecasting. AppliedEnergy,323, Article ID: 119546. https://doi.org/10.1016/j.apenergy.2022.119546
[32]
Hamblyn, R. et al. (2021). The Cloud Book: How to Understand the Skies. David and Charles.
[33]
Inman, R. H., Chu, Y., & Coimbra, C. F. M. (2016). Cloud Enhancement of Global Horizontal Irradiance in California and Hawaii. SolarEnergy,130, 128-138. https://doi.org/10.1016/j.solener.2016.02.011
[34]
Inman, R. H., Pedro, H. T. C., & Coimbra, C. F. M. (2013). Solar Forecasting Methods for Renewable Energy Integration. ProgressinEnergyandCombustionScience,39, 535-576. https://doi.org/10.1016/j.pecs.2013.06.002
[35]
Iqbal, M. (1983). An Introduction to Solar Radiation. Academic Press.
[36]
Jewell, W., & Ramakumar, R. (1987). The Effects of Moving Clouds on Electric Utilities with Dispersed Photovoltaic Generation. IEEETransactionsonEnergyConversion,2, 570-576. https://doi.org/10.1109/tec.1987.4765894
[37]
Juncklaus Martins, B., Cerentini, A., Mantelli, S. L., Loureiro Chaves, T. Z., Moreira Branco, N., von Wangenheim, A. et al. (2022). Systematic Review of Nowcasting Approaches for Solar Energy Production Based upon Ground-Based Cloud Imaging. SolarEnergyAdvances,2, Article ID: 100019. https://doi.org/10.1016/j.seja.2022.100019
[38]
Juncklaus Martins, B., Cerentini, A., Mantelli, S. L., Loureiro Chaves, T. Z., Moreira Branco, N., von Wangenheim, A. et al. (2022). Systematic Review of Nowcasting Approaches for Solar Energy Production Based Upon Ground-Based Cloud Imaging. SolarEnergyAdvances,2, Article ID: 100019. https://doi.org/10.1016/j.seja.2022.100019
[39]
Kariniotakis, G. (2017). Renewable Energy Forecasting: From Models to Applications. Woodhead Publishing.
[40]
Kavlak, G., McNerney, J., & Trancik, J. E. (2018). Evaluating the Causes of Cost Reduction in Photovoltaic Modules. EnergyPolicy,123, 700-710. https://doi.org/10.1016/j.enpol.2018.08.015
[41]
Lappalainen, K., & Valkealahti, S. (2017). Photovoltaic Mismatch Losses Caused by Moving Clouds. SolarEnergy,158, 455-461. https://doi.org/10.1016/j.solener.2017.10.001
[42]
Leelaruji, T., & Teerakawanich, N. (2020). Short Term Prediction of Solar Irradiance Fluctuation Using Image Processing with Resnet. In 2020 8th International Electrical Engineering Congress (iEECON) (pp. 1-4). IEEE. https://doi.org/10.1109/ieecon48109.2020.229573
[43]
Li, Q., Lu, W., & Yang, J. (2011). A Hybrid Thresholding Algorithm for Cloud Detection on Ground-Based Color Images. JournalofAtmosphericandOceanicTechnology,28, 1286-1296. https://doi.org/10.1175/jtech-d-11-00009.1
[44]
Lin, F., Zhang, Y., & Wang, J. (2023). Recent Advances in Intra-Hour Solar Forecasting: A Review of Ground-Based Sky Image Methods. InternationalJournalofForecasting,39, 244-265. https://doi.org/10.1016/j.ijforecast.2021.11.002
[45]
Lu, Z., Wang, Z., Li, X., & Zhang, J. (2021). A Method of Ground-Based Cloud Motion Predict: CCLSTM + SR-Net. RemoteSensing,13, Article No. 3876. https://doi.org/10.3390/rs13193876
Magnone, L., Sossan, F., Scolari, E., & Paolone, M. (2017). Cloud Motion Identification Algorithms Based on All-Sky Images to Support Solar Irradiance Forecast. In 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC) (pp. 1415-1420). IEEE. https://doi.org/10.1109/pvsc.2017.8366102
[48]
Marcos, J., Marroyo, L., Lorenzo, E., Alvira, D., & Izco, E. (2011a). From Irradiance to Output Power Fluctuations: The PV Plant as a Low Pass Filter. ProgressinPhotovoltaics:ResearchandApplications,19, 505-510. https://doi.org/10.1002/pip.1063
[49]
Marcos, J., Marroyo, L., Lorenzo, E., Alvira, D., & Izco, E. (2011b). Power Output Fluctuations in Large Scale Pv Plants: One Year Observations with One Second Resolution and a Derived Analytic Model. ProgressinPhotovoltaics:ResearchandApplications,19, 218-227. https://doi.org/10.1002/pip.1016
[50]
Marcos, J., Storkël, O., Marroyo, L., Garcia, M., & Lorenzo, E. (2014). Storage Requirements for PV Power Ramp-Rate Control. SolarEnergy,99, 28-35. https://doi.org/10.1016/j.solener.2013.10.037
[51]
Marquez, R., & Coimbra, C. F. M. (2013). Intra-Hour DNI Forecasting Based on Cloud Tracking Image Analysis. SolarEnergy,91, 327-336. https://doi.org/10.1016/j.solener.2012.09.018
[52]
Martins, B. J., Arrais, J. M., Cerentini, A., Mantelli, S., Neto, G. P. R., & von Wangenheim, A. (2023). Semantic Segmentation of Cloud Images Captured with Horizon-Oriented Cameras for Nowcasting Applications.
[53]
Martins, G. L., Mantelli, S. L., & Rüther, R. (2022). Evaluating the Performance of Radiometers for Solar Overirradiance Events. SolarEnergy,231, 47-56. https://doi.org/10.1016/j.solener.2021.11.050
[54]
McCormick, P. G., & Suehrcke, H. (2018). The Effect of Intermittent Solar Radiation on the Performance of PV Systems. SolarEnergy,171, 667-674. https://doi.org/10.1016/j.solener.2018.06.043
[55]
Moncada, A., Richardson Jr., W., & Vega-Avila, R. (2018). Deep Learning to Forecast Solar Irradiance Using a Six-Month UTSA Skyimager Dataset. Energies,11, Article No. 1988. https://doi.org/10.3390/en11081988
[56]
Mori, N. (2002). Introduction to MPIV: User Reference Manual. http://www.oceanwave.jp/softwares/mpiv_doc/
[57]
Nottrott, A., Kleissl, J., & Washom, B. (2012). Storage Dispatch Optimization for Grid-Connected Combined Photovoltaic-Battery Storage Systems. In 2012 IEEE Power and Energy Society General Meeting (pp. 1-7). IEEE. https://doi.org/10.1109/pesgm.2012.6344979
[58]
Nouri, B., Kuhn, P., Wilbert, S., Hanrieder, N., Prahl, C., Zarzalejo, L. et al. (2019). Cloud Height and Tracking Accuracy of Three All Sky Imager Systems for Individual Clouds. SolarEnergy,177, 213-228. https://doi.org/10.1016/j.solener.2018.10.079
[59]
Paletta, Q., & Lasenby, J. (2020). Convolutional Neural Networks Applied to Sky Images for Short-Term Solar Irradiance Forecasting.
[60]
Pavlović, T. M., Radonjić, I. S., Milosavljević, D. D., & Pantić, L. S. (2012). A Review of Concentrating Solar Power Plants in the World and Their Potential Use in Serbia. RenewableandSustainableEnergyReviews,16, 3891-3902. https://doi.org/10.1016/j.rser.2012.03.042
[61]
Pecenak, Z. K., Mejia, F. A., Kurtz, B., Evan, A., & Kleissl, J. (2016). Simulating Irradiance Enhancement Dependence on Cloud Optical Depth and Solar Zenith Angle. SolarEnergy,136, 675-681. https://doi.org/10.1016/j.solener.2016.07.045
[62]
Peng, Z., Yu, D., Huang, D., Heiser, J., & Kalb, P. (2016). A Hybrid Approach to Estimate the Complex Motions of Clouds in Sky Images. SolarEnergy,138, 10-25. https://doi.org/10.1016/j.solener.2016.09.002
[63]
Peng, Z., Yu, D., Huang, D., Heiser, J., Yoo, S., & Kalb, P. (2015a). 3D Cloud Detection and Tracking System for Solar Forecast Using Multiple Sky Imagers. SolarEnergy,118, 496-519. https://doi.org/10.1016/j.solener.2015.05.037
[64]
Peng, Z., Yu, D., Huang, D., Heiser, J., Yoo, S., & Kalb, P. (2015b). 3D Cloud Detection and Tracking System for Solar Forecast Using Multiple Sky Imagers. SolarEnergy,118, 496-519. https://doi.org/10.1016/j.solener.2015.05.037
[65]
Pierce, B. G., Stein, J. S., Braid, J. L., & Riley, D. (2022). Cloud Segmentation and Motion Tracking in Sky Images. IEEEJournalofPhotovoltaics,12, 1354-1360. https://doi.org/10.1109/jphotov.2022.3215890
[66]
Quesada-Ruiz, S., Chu, Y., Tovar-Pescador, J., Pedro, H. T. C., & Coimbra, C. F. M. (2014). Cloud-Tracking Methodology for Intra-Hour DNI Forecasting. SolarEnergy,102, 267-275. https://doi.org/10.1016/j.solener.2014.01.030
[67]
Richardson, W., Krishnaswami, H., Shephard, L., & Vega, R. (2017a). Machine Learning versus Ray-Tracing to Forecast Irradiance for an Edge-Computing Skyimager. In 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP) (pp. 1-6). IEEE. https://doi.org/10.1109/isap.2017.8071425
[68]
Richardson, W., Krishnaswami, H., Vega, R., & Cervantes, M. (2017b). A Low Cost, Edge Computing, All-Sky Imager for Cloud Tracking and Intra-Hour Irradiance Forecasting. Sustainability, 9, Article No. 482. https://doi.org/10.3390/su9040482
[69]
Ruther, R., Tamizh-Mani, G., del Cueto, J., Adelstein, J., Montenegro, A., & von Roedern, B. (2003). Performance Test of Amorphous Silicon Modules in Different Climates: Higher Minimum Operating Temperatures Lead to Higher Performance Levels. In 3rd World Conference on Photovoltaic Energy Conversion (Vol. 2, pp. 2011-2014). IEEE.
[70]
Saleh, M., Meek, L., Masoum, M. A. S., & Abshar, M. (2018). Battery-Less Short-Term Smoothing of Photovoltaic Generation Using Sky Camera. IEEETransactionsonIndustrialInformatics,14, 403-414. https://doi.org/10.1109/tii.2017.2767038
[71]
Sawant, M., Shende, M. K., Feijóo-Lorenzo, A. E., & Bokde, N. D. (2021). The State-of-the-Art Progress in Cloud Detection, Identification, and Tracking Approaches: A Systematic Review. Energies,14, Article No. 8119. https://doi.org/10.3390/en14238119
[72]
Sawin, J.L., Sverrisson, F., Rutovitz, J., Dwyer, S., Teske, S., Murdock, H.E. et al. (2018). Renewables 2018-Global Status Report. A Comprehensive Annual Overview of the State of Renewable Energy. Advancing the Global Renewable Energy Transition-Highlights of the ren21 Renewables 2018 Global Status Report in Perspective. INIS-FR-18-0718.
[73]
Shah, R., Mithulananthan, N., Bansal, R. C., & Ramachandaramurthy, V. K. (2015). A Review of Key Power System Stability Challenges for Large-Scale PV Integration. RenewableandSustainableEnergyReviews,41, 1423-1436. https://doi.org/10.1016/j.rser.2014.09.027
[74]
Siva Reddy, V., Kaushik, S. C., Ranjan, K. R., & Tyagi, S. K. (2013). State-of-the-Art of Solar Thermal Power Plants—A Review. RenewableandSustainableEnergyReviews,27, 258-273. https://doi.org/10.1016/j.rser.2013.06.037
[75]
Su, X., Li, T., An, C., & Wang, G. (2020). Prediction of Short-Time Cloud Motion Using a Deep-Learning Model. Atmosphere,11, Article No. 1151. https://doi.org/10.3390/atmos11111151
[76]
Sun, S., Ernst, J., Sapkota, A., Ritzhaupt-Kleissl, E., Wiles, J., Bamberger, J. et al. (2014). Short Term Cloud Coverage Prediction Using Ground Based All Sky Imager. In 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm) (pp. 121-126). IEEE. https://doi.org/10.1109/smartgridcomm.2014.7007633
[77]
Thuillier, G., Perrin, J., Keckhut, P., & Huppert, F. (2013). Local Enhanced Solar Irradiance on the Ground Generated by Cirrus: Measurements and Interpretation. JournalofAppliedRemoteSensing,7, Article ID: 073543. https://doi.org/10.1117/1.jrs.7.073543
[78]
Tiwari, S., Sabzehgar, R., & Rasouli, M. (2019). Short Term Solar Irradiance Forecast Based on Image Processing and Cloud Motion Detection. In 2019 IEEE Texas Power and Energy Conference (TPEC) (pp. 1-6). IEEE. https://doi.org/10.1109/tpec.2019.8662134
[79]
Toreti Scarabelot, L., Arns Rampinelli, G., & Rambo, C. R. (2021). Overirradiance Effect on the Electrical Performance of Photovoltaic Systems of Different Inverter Sizing Factors. SolarEnergy,225, 561-568. https://doi.org/10.1016/j.solener.2021.07.055
[80]
West, S. R., Rowe, D., Sayeef, S., & Berry, A. (2014). Short-Term Irradiance Forecasting Using Skycams: Motivation and Development. SolarEnergy,110, 188-207. https://doi.org/10.1016/j.solener.2014.08.038
[81]
Xu, J., Yoo, S., Yu, D., Huang, D., Heiser, J., & Kalb, P. (2015). Solar Irradiance Forecasting Using Multi-Layer Cloud Tracking and Numerical Weather Prediction. In Proceedings of the 30th Annual ACM Symposium on Applied Computing (pp. 2225-2230). ACM, Inc. https://doi.org/10.1145/2695664.2695812
[82]
Yordanov, G. H. (2015). A Study of Extreme Overirradiance Events for Solar Energy Applications Using Nasa’s I3RC Monte Carlo Radiative Transfer Model. SolarEnergy,122, 954-965. https://doi.org/10.1016/j.solener.2015.10.014
[83]
Yordanov, G. H., Midtgård, O., Saetre, T. O., Nielsen, H. K., & Norum, L. E. (2013). Overirradiance (Cloud Enhancement) Events at High Latitudes. IEEEJournalofPhotovoltaics,3, 271-277. https://doi.org/10.1109/jphotov.2012.2213581
[84]
Zaher, A., Thil, S., Nou, J., Traoré, A., & Grieu, S. (2017). Comparative Study of Algorithms for Cloud Motion Estimation Using Sky-Imaging Data. IFAC-PapersOnLine,50, 5934-5939. https://doi.org/10.1016/j.ifacol.2017.08.1488
[85]
Zhang, C., Du, Y., Chen, X., & Lim, E. G. (2018). Cloud Motion Forecasting and Cloud Base Height Estimation Using Two Low-Cost Sky Cameras. In 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2) (pp. 1-6). IEEE. https://doi.org/10.1109/ei2.2018.8582657
[86]
Zhang, S., Dong, Z., Yang, X., Chai, S., Xu, Z., & Qi, D. (2019). Intrahour Cloud Tracking Based on Optical Flow. In 2019 Chinese Control Conference (CCC) (pp. 3023-3028). IEEE. https://doi.org/10.23919/chicc.2019.8865296
[87]
Zhen, Z., Pang, S., Wang, F., Li, K., Li, Z., Ren, H. et al. (2019). Pattern Classification and PSO Optimal Weights Based Sky Images Cloud Motion Speed Calculation Method for Solar PV Power Forecasting. IEEE Transactions on Industry Applications, 55, 3331-3342. https://doi.org/10.1109/tia.2019.2904927
[88]
Zhen, Z., Wang, F., Mi, Z., Sun, Y., & Sun, H. (2015). Cloud Tracking and Forecasting Method Based on Optimization Model for PV Power Forecasting. In 2015 Australasian Universities Power Engineering Conference (AUPEC) (pp. 1-4). IEEE. https://doi.org/10.1109/aupec.2015.7324883