Although the importance of forest margins in ecology is recognized, no study has been carried out in the Sl?tioara Secular Forest Reserve with reference to the variability of abiotic parameters along forest margins. With this study, we investigate to what extent microclimatic variables (air temperature—T_air, air humidity—H_air, soil temperature—T_soil, soil humidity—H_soil wind intensity (WIND) and photosynthetically active radiation intensity (PAR)) are correlated with the distance from the edge to the forest interior and the habitat type (forest interior, inner and outer edge and meadow) in the Sl?tioara Secular Forest Reserve. In order to measure these microenvironment variables we used the strip transect method, positioned perpendicular to the forest edge. Differences in the microenvironment variables considered in the analysis between the four habitat types were assessed using one-way ANOVA followed by Tukey-test post-hoc. To assess differences along transects, each of the six measurements went through a one-way ANOVA against distance to edge, followed by a Levene’s test for variances and finally a Tukey-test post-hoc. The results indicate that the values of microclimatic variables were significantly different in relation to the gradient of distance from the edge and to the habitat type (interior-exterior forest) and that edge habitats are significantly more susceptible to lower humidity, high winds, lower light and higher air temperatures than forest interior habitats. The ecological study of the edge areas in this reserve provides the basis for future research on forest dynamics and can guide conservation efforts to maintain the diversity and endemism of species in the Sl?tioara Secular Forest.
References
[1]
Aalto, J., le Roux, P. C., & Luoto, M. (2013). Vegetation Mediates Soil Temperature and Moisture in Arctic-Alpine Environments. Arctic,Antarctic,andAlpineResearch,45, 429-439. https://doi.org/10.1657/1938-4246-45.4.429
[2]
Aalto, J., Scherrer, D., Lenoir, J., Guisan, A., & Luoto, M. (2018). Biogeophysical Controls on Soil-Atmosphere Thermal Differences: Implications on Warming Arctic Ecosystems. EnvironmentalResearchLetters,13, Article ID: 074003. https://doi.org/10.1088/1748-9326/aac83e
[3]
Aude, E., & Lawesson, J. E. (1998). Vegetation in Danish Beech Forests: The Importance of Soil, Microclimate and Management Factors, Evaluated by Variation Partitioning. PlantEcology,134, 53-65. https://doi.org/10.1023/a:1009720206762
[4]
Aussenac, G. (2000). Interactions between Forest Stands and Microclimate: Ecophysiological Aspects and Consequences for Silviculture. AnnalsofForestScience,57, 287-301. https://doi.org/10.1051/forest:2000119
[5]
Barry, R., & Blanken, P. (2016). Microclimate and Local Climate. Cambridge University Press. https://doi.org/10.1017/cbo9781316535981
[6]
Broadbent, E. N., Asner, G. P., Keller, M., Knapp, D. E., Oliveira, P. J. C., & Silva, J. N. (2008). Forest Fragmentation and Edge Effects from Deforestation and Selective Logging in the Brazilian Amazon. BiologicalConservation,141, 1745-1757. https://doi.org/10.1016/j.biocon.2008.04.024
[7]
Buras, A., Rehschuh, R., Fonti, M., Lange, J., Fonti, P., Menzel, A. et al. (2023). Quantitative Wood Anatomy and Stable Carbon Isotopes Indicate Pronounced Drought Exposure of Scots Pine When Growing at the Forest Edge. FrontiersinForestsandGlobalChange,6, Article 1233052. https://doi.org/10.3389/ffgc.2023.1233052
[8]
Cenuşă, R., Popa, C., & Teodosiu, M. (2002). Cercetări privind relaţia structură-funcţie şi evoluţia ecosistemelor forestiere naturale din nordul ţării [Research on the Structure-Function Relationship and Evolution of Natural Forest Ecosystems in the North]. Anale ICAS, 45, 9-19.
[9]
Chen, J., Franklin, J. F., & Spies, T. A. (1992). Vegetation Responses to Edge Environments in Old‐Growth Douglas‐Fir Forests. EcologicalApplications,2, 387-396. https://doi.org/10.2307/1941873
[10]
Chen, J., Franklin, J. F., & Spies, T. A. (1995). Growing-Season Microclimatic Gradients from Clearcut Edges into Old‐Growth Douglas‐Fir Forests. EcologicalApplications,5, 74-86. https://doi.org/10.2307/1942053
[11]
Davies‐Colley, R. J., & Quinn, J. M. (1998). Stream Lighting in Five Regions of North Island, New Zealand: Control by Channel Size and Riparian Vegetation. NewZealandJournalofMarineandFreshwaterResearch,32, 591-605. https://doi.org/10.1080/00288330.1998.9516847
[12]
Davies-Colley, R. J., Payne, G. W., & Van Elswijk, M. (2000). Microclimate Gradients across a Forest Edge. New Zealand Journal of Ecology,24, 111-121.
[13]
De Frenne, P., Graae, B. J., Rodríguez‐Sánchez, F., Kolb, A., Chabrerie, O., Decocq, G. et al. (2013). Latitudinal Gradients as Natural Laboratories to Infer Species’ Responses to Temperature. JournalofEcology,101, 784-795. https://doi.org/10.1111/1365-2745.12074
[14]
De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B. R., Zellweger, F., Aalto, J. et al. (2021). Forest Microclimates and Climate Change: Importance, Drivers and Future Research Agenda. GlobalChangeBiology,27, 2279-2297. https://doi.org/10.1111/gcb.15569
[15]
De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B. R., Hylander, K., Luoto, M. et al. (2019). Global Buffering of Temperatures under Forest Canopies. NatureEcology&Evolution,3, 744-749. https://doi.org/10.1038/s41559-019-0842-1
[16]
Dierschke, H. (1974). SaumgesellschaftenimVegetationsundStandortsgefalleanWaldrandern[Fringe Communities in Vegetation and Location Gradients at Forest Edges]. Goltze.
[17]
Ewers, R. M., & Banks-Leite, C. (2013). Fragmentation Impairs the Microclimate Buffering Effect of Tropical Forests. PLOSONE,8, e58093. https://doi.org/10.1371/journal.pone.0058093
[18]
Fekete, I., Varga, C., Biró, B., Tóth, J. A., Várbíró, G., Lajtha, K. et al. (2016). The Effects of Litter Production and Litter Depth on Soil Microclimate in a Central European Deciduous Forest. PlantandSoil,398, 291-300. https://doi.org/10.1007/s11104-015-2664-5
[19]
Fernández‐Pascual, E., & Correia‐Álvarez, E. (2021). Mire Microclimate: Groundwater Buffers Temperature in Waterlogged versus Dry Soils. InternationalJournalofClimatology,41, E2949-E2958. https://doi.org/10.1002/joc.6893
[20]
Frey, S. J. K., Hadley, A. S., Johnson, S. L., Schulze, M., Jones, J. A., & Betts, M. G. (2016). Spatial Models Reveal the Microclimatic Buffering Capacity of Old-Growth Forests. ScienceAdvances,2, e1501392. https://doi.org/10.1126/sciadv.1501392
[21]
Gehlhausen, S. M., Schwartz, M. W., & Augspurger, C. K. (2000). Vegetation and microclimatic edge effects in two mixedmesophytic forest fragments. PlantEcology,147, 21-35. https://doi.org/10.1023/a:1009846507652
[22]
Geiger, R. (1965). TheClimateNeartheGround. Harvard University Press.
[23]
Grundstein, A., Todhunter, P., & Mote, T. (2005). Snowpack Control over the Thermal Offset of Air and Soil Temperatures in Eastern North Dakota. GeophysicalResearchLetters,32, L08503. https://doi.org/10.1029/2005gl022532
[24]
Harper, K. A., MacDonald, S. E., Burton, P. J., Chen, J., Brosofske, K. D., Saunders, S. C. et al. (2005). Edge Influence on Forest Structure and Composition in Fragmented Landscapes. ConservationBiology,19, 768-782. https://doi.org/10.1111/j.1523-1739.2005.00045.x
[25]
Hatcher, L., & Stepanski, E. J. (1994). A Step-by-Step Approach to Using theSAS System for Univariate and Multivariate Statistics. SAS Institute.
[26]
Heithecker, T. D., & Halpern, C. B. (2007). Edge-related Gradients in Microclimate in Forest Aggregates Following Structural Retention Harvests in Western Washington. ForestEcologyandManagement,248, 163-173. https://doi.org/10.1016/j.foreco.2007.05.003
[27]
Hutchison, B. A., & Matt, D. R. (1977). The Distribution of Solar Radiation within a Deciduous Forest. EcologicalMonographs,47, 185-207. https://doi.org/10.2307/1942616
[28]
Kemppinen, J., Niittynen, P., le Roux, P. C., Momberg, M., Happonen, K., Aalto, J. et al. (2021). Consistent Trait-Environment Relationships within and across Tundra Plant Communities. NatureEcology&Evolution,5, 458-467. https://doi.org/10.1038/s41559-021-01396-1
[29]
Kovács, B., Tinya, F., & Ódor, P. (2017). Stand Structural Drivers of Microclimate in Mature Temperate Mixed Forests. AgriculturalandForestMeteorology,234, 11-21. https://doi.org/10.1016/j.agrformet.2016.11.268
[30]
Laurance, W. F., Camargo, J. L. C., Luizão, R. C. C., Laurance, S. G., Pimm, S. L., Bruna, E. M. et al. (2011). The Fate of Amazonian Forest Fragments: A 32-Year Investigation. BiologicalConservation,144, 56-67. https://doi.org/10.1016/j.biocon.2010.09.021
[31]
Laurance, W. F., Lovejoy, T. E., Vasconcelos, H. L., Bruna, E. M., Didham, R. K., Stouffer, P. C. et al. (2002). Ecosystem Decay of Amazonian Forest Fragments: A 22‐year Investigation. ConservationBiology,16, 605-618. https://doi.org/10.1046/j.1523-1739.2002.01025.x
[32]
Laurance, W. F., Nascimento, H. E. M., Laurance, S. G., Andrade, A., Ewers, R. M., Harms, K. E. et al. (2007). Habitat Fragmentation, Variable Edge Effects, and the Landscape-Divergence Hypothesis. PLOSONE,2, e1017. https://doi.org/10.1371/journal.pone.0001017
[33]
Lee, R. (1978). ForestMicroclimatology. Columbia University Press.
[34]
Li, C., Michel, C., Seland Graff, L., Bethke, I., Zappa, G., Bracegirdle, T. J. et al. (2018). Midlatitude Atmospheric Circulation Responses under 1.5 and 2.0°C Warming and Implications for Regional Impacts. EarthSystemDynamics,9, 359-382. https://doi.org/10.5194/esd-9-359-2018
[35]
Li, Q., Chen, J., Song, B., LaCroix, J. J., Bresee, M. K., & Radmacher, J. A. (2007). Areas Influenced by Multiple Edges and Their Implications in Fragmented Landscapes. ForestEcologyandManagement,242, 99-107. https://doi.org/10.1016/j.foreco.2006.11.022
[36]
Łuczaj, Ł., & Sadowska, B. (1997). Edge Effect in Different Groups of Organisms: Vascular Plant, Bryophyte and Fungi Species Richness across a Forest-Grassland Border. FoliaGeobotanicaetPhytotaxonomica,32, 343-353. https://doi.org/10.1007/bf02821940
[37]
Matlack, G. R. (1993). Microenvironment Variation within and among Forest Edge Sites in the Eastern United States. BiologicalConservation,66, 185-194. https://doi.org/10.1016/0006-3207(93)90004-k
[38]
Meeussen, C., Govaert, S., Vanneste, T., Bollmann, K., Brunet, J., Calders, K. et al. (2021). Microclimatic Edge-To-Interior Gradients of European Deciduous Forests. AgriculturalandForestMeteorology,311, Article ID: 108699. https://doi.org/10.1016/j.agrformet.2021.108699
[39]
Murcia, C. (1995). Edge Effects in Fragmented Forests: Implications for Conservation. TrendsinEcology&Evolution,10, 58-62. https://doi.org/10.1016/s0169-5347(00)88977-6
[40]
Nascimento, H. E. M., & Laurance, W. F. (2004). Biomass Dynamics in Amazonian Forest Fragments. EcologicalApplications,14, 127-138. https://doi.org/10.1890/01-6003
[41]
Negulescu, E. G., & Stănescu, V. (1964). Dendrologia,culturasiprotectiapadurilor[Dendrology, Culture and Forest Protection]. Anticariat UNU.
[42]
Økland, F., Erkinaro, J., Moen, K., Niemelä, E., Fiske, P., McKinley, R. S., & Thorstad, E. B. (2001). Return Migration of Atlantic Salmon in the River Tana: Phases of Migratory Behaviour. JournalofFishBiology,59, 862-874. https://doi.org/10.1006/jfbi.2001.1701
[43]
Oksanen, J. et al. (2007). TheVeganPackage. https://www.researchgate.net/profile/Gavin_Simpson/publication/228339454_The_vegan_package/links/0912f50be86bc29a7f000000.pdf
[44]
Orczewska, A., & Glista, A. (2005). Floristic Analysis of the Two Woodland-Meadow Ecotones Differing in Orientation of the Forest Edge. Polish Journal of Ecology,53, 365-382.
[45]
Paula, M. D., Costa, C. P. A., & Tabarelli, M. (2011). Carbon Storage in a Fragmented Landscape of Atlantic Forest: The Role Played by Edge-Affected Habitats and Emergent Trees. TropicalConservationScience,4, 349-358. https://doi.org/10.1177/194008291100400310
[46]
Pütz, S., Groeneveld, J., Henle, K., Knogge, C., Martensen, A. C., Metz, M. et al. (2014). Long-term Carbon Loss in Fragmented Neotropical Forests. NatureCommunications,5, Article No. 5037. https://doi.org/10.1038/ncomms6037
[47]
Raynor, G. S. (1971). Wind and Temperature Structure in a Coniferous Forest and a Contiguous Field. Forest Science,17, 351-363.
[48]
Riutta, T., Slade, E. M., Bebber, D. P., Taylor, M. E., Malhi, Y., Riordan, P. et al. (2012). Experimental Evidence for the Interacting Effects of Forest Edge, Moisture and Soil Macrofauna on Leaf Litter Decomposition. SoilBiologyandBiochemistry,49, 124-131. https://doi.org/10.1016/j.soilbio.2012.02.028
[49]
Saunders, S. C., Chen, J., Drummer, T. D., & Crow, T. R. (1999). Modeling Temperature Gradients across Edges over Time in a Managed Landscape. ForestEcologyandManagement,117, 17-31. https://doi.org/10.1016/s0378-1127(98)00468-x
[50]
Schmidt, J., Marques, M. R. G., Botti, S., & Marques, M. A. L. (2019a). Recent Advances and Applications of Machine Learning in Solid-State Materials Science. NPJComputationalMaterials,5, Article No. 83. https://doi.org/10.1038/s41524-019-0221-0
[51]
Schmidt, M., Lischeid, G., & Nendel, C. (2019b). Microclimate and Matter Dynamics in Transition Zones of Forest to Arable Land. AgriculturalandForestMeteorology,268, 1-10. https://doi.org/10.1016/j.agrformet.2019.01.001
[52]
Stoutjesdijk, P., & Barkman, J. J. (1992). Microclimate, Vegetation and Fauna. Opulus Press.
[53]
Young, A., & Mitchell, N. (1994). Microclimate and Vegetation Edge Effects in a Fragmented Podocarp-Broadleaf Forest in New Zealand. BiologicalConservation,67, 63-72. https://doi.org/10.1016/0006-3207(94)90010-8
[54]
Zar, J. H. (1984). BiostatisticalAnalysis (2nd ed.). Prentice-Hall, Inc.
[55]
Zellweger, F., Baltensweiler, A., Schleppi, P., Huber, M., Küchler, M., Ginzler, C. et al. (2019a). Estimating Below‐Canopy Light Regimes Using Airborne Laser Scanning: An Application to Plant Community Analysis. EcologyandEvolution,9, 9149-9159. https://doi.org/10.1002/ece3.5462
[56]
Zellweger, F., Coomes, D., Lenoir, J., Depauw, L., Maes, S. L., Wulf, M. et al. (2019b). Seasonal Drivers of Understorey Temperature Buffering in Temperate Deciduous Forests across Europe. GlobalEcologyandBiogeography,28, 1774-1786. https://doi.org/10.1111/geb.12991