全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spatial Variability of Microclimate Characteristics in Transition Zone of the Forest: A Case Study of Sl?tioara Secular Forest

DOI: 10.4236/ojf.2024.144021, PP. 369-396

Keywords: Component, Forest Microclimate, Edge Effects, Edge-Interior Relationships, Forest Buffer Zone, Edge Influence, Microclimatic Influences

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although the importance of forest margins in ecology is recognized, no study has been carried out in the Sl?tioara Secular Forest Reserve with reference to the variability of abiotic parameters along forest margins. With this study, we investigate to what extent microclimatic variables (air temperature—T_air, air humidity—H_air, soil temperature—T_soil, soil humidity—H_soil wind intensity (WIND) and photosynthetically active radiation intensity (PAR)) are correlated with the distance from the edge to the forest interior and the habitat type (forest interior, inner and outer edge and meadow) in the Sl?tioara Secular Forest Reserve. In order to measure these microenvironment variables we used the strip transect method, positioned perpendicular to the forest edge. Differences in the microenvironment variables considered in the analysis between the four habitat types were assessed using one-way ANOVA followed by Tukey-test post-hoc. To assess differences along transects, each of the six measurements went through a one-way ANOVA against distance to edge, followed by a Levene’s test for variances and finally a Tukey-test post-hoc. The results indicate that the values of microclimatic variables were significantly different in relation to the gradient of distance from the edge and to the habitat type (interior-exterior forest) and that edge habitats are significantly more susceptible to lower humidity, high winds, lower light and higher air temperatures than forest interior habitats. The ecological study of the edge areas in this reserve provides the basis for future research on forest dynamics and can guide conservation efforts to maintain the diversity and endemism of species in the Sl?tioara Secular Forest.

References

[1]  Aalto, J., le Roux, P. C., & Luoto, M. (2013). Vegetation Mediates Soil Temperature and Moisture in Arctic-Alpine Environments. Arctic, Antarctic, and Alpine Research, 45, 429-439.
https://doi.org/10.1657/1938-4246-45.4.429
[2]  Aalto, J., Scherrer, D., Lenoir, J., Guisan, A., & Luoto, M. (2018). Biogeophysical Controls on Soil-Atmosphere Thermal Differences: Implications on Warming Arctic Ecosystems. Environmental Research Letters, 13, Article ID: 074003.
https://doi.org/10.1088/1748-9326/aac83e
[3]  Aude, E., & Lawesson, J. E. (1998). Vegetation in Danish Beech Forests: The Importance of Soil, Microclimate and Management Factors, Evaluated by Variation Partitioning. Plant Ecology, 134, 53-65.
https://doi.org/10.1023/a:1009720206762
[4]  Aussenac, G. (2000). Interactions between Forest Stands and Microclimate: Ecophysiological Aspects and Consequences for Silviculture. Annals of Forest Science, 57, 287-301.
https://doi.org/10.1051/forest:2000119
[5]  Barry, R., & Blanken, P. (2016). Microclimate and Local Climate. Cambridge University Press.
https://doi.org/10.1017/cbo9781316535981
[6]  Broadbent, E. N., Asner, G. P., Keller, M., Knapp, D. E., Oliveira, P. J. C., & Silva, J. N. (2008). Forest Fragmentation and Edge Effects from Deforestation and Selective Logging in the Brazilian Amazon. Biological Conservation, 141, 1745-1757.
https://doi.org/10.1016/j.biocon.2008.04.024
[7]  Buras, A., Rehschuh, R., Fonti, M., Lange, J., Fonti, P., Menzel, A. et al. (2023). Quantitative Wood Anatomy and Stable Carbon Isotopes Indicate Pronounced Drought Exposure of Scots Pine When Growing at the Forest Edge. Frontiers in Forests and Global Change, 6, Article 1233052.
https://doi.org/10.3389/ffgc.2023.1233052
[8]  Cenuşă, R., Popa, C., & Teodosiu, M. (2002). Cercetări privind relaţia structură-funcţie şi evoluţia ecosistemelor forestiere naturale din nordul ţării [Research on the Structure-Function Relationship and Evolution of Natural Forest Ecosystems in the North]. Anale ICAS, 45, 9-19.
[9]  Chen, J., Franklin, J. F., & Spies, T. A. (1992). Vegetation Responses to Edge Environments in Old‐Growth Douglas‐Fir Forests. Ecological Applications, 2, 387-396.
https://doi.org/10.2307/1941873
[10]  Chen, J., Franklin, J. F., & Spies, T. A. (1995). Growing-Season Microclimatic Gradients from Clearcut Edges into Old‐Growth Douglas‐Fir Forests. Ecological Applications, 5, 74-86.
https://doi.org/10.2307/1942053
[11]  Davies‐Colley, R. J., & Quinn, J. M. (1998). Stream Lighting in Five Regions of North Island, New Zealand: Control by Channel Size and Riparian Vegetation. New Zealand Journal of Marine and Freshwater Research, 32, 591-605.
https://doi.org/10.1080/00288330.1998.9516847
[12]  Davies-Colley, R. J., Payne, G. W., & Van Elswijk, M. (2000). Microclimate Gradients across a Forest Edge. New Zealand Journal of Ecology, 24, 111-121.
[13]  De Frenne, P., Graae, B. J., Rodríguez‐Sánchez, F., Kolb, A., Chabrerie, O., Decocq, G. et al. (2013). Latitudinal Gradients as Natural Laboratories to Infer Species’ Responses to Temperature. Journal of Ecology, 101, 784-795.
https://doi.org/10.1111/1365-2745.12074
[14]  De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B. R., Zellweger, F., Aalto, J. et al. (2021). Forest Microclimates and Climate Change: Importance, Drivers and Future Research Agenda. Global Change Biology, 27, 2279-2297.
https://doi.org/10.1111/gcb.15569
[15]  De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B. R., Hylander, K., Luoto, M. et al. (2019). Global Buffering of Temperatures under Forest Canopies. Nature Ecology & Evolution, 3, 744-749.
https://doi.org/10.1038/s41559-019-0842-1
[16]  Dierschke, H. (1974). Saumgesellschaften im Vegetations und Standortsgefalle an Waldrandern [Fringe Communities in Vegetation and Location Gradients at Forest Edges]. Goltze.
[17]  Ewers, R. M., & Banks-Leite, C. (2013). Fragmentation Impairs the Microclimate Buffering Effect of Tropical Forests. PLOS ONE, 8, e58093.
https://doi.org/10.1371/journal.pone.0058093
[18]  Fekete, I., Varga, C., Biró, B., Tóth, J. A., Várbíró, G., Lajtha, K. et al. (2016). The Effects of Litter Production and Litter Depth on Soil Microclimate in a Central European Deciduous Forest. Plant and Soil, 398, 291-300.
https://doi.org/10.1007/s11104-015-2664-5
[19]  Fernández‐Pascual, E., & Correia‐Álvarez, E. (2021). Mire Microclimate: Groundwater Buffers Temperature in Waterlogged versus Dry Soils. International Journal of Climatology, 41, E2949-E2958.
https://doi.org/10.1002/joc.6893
[20]  Frey, S. J. K., Hadley, A. S., Johnson, S. L., Schulze, M., Jones, J. A., & Betts, M. G. (2016). Spatial Models Reveal the Microclimatic Buffering Capacity of Old-Growth Forests. Science Advances, 2, e1501392.
https://doi.org/10.1126/sciadv.1501392
[21]  Gehlhausen, S. M., Schwartz, M. W., & Augspurger, C. K. (2000). Vegetation and microclimatic edge effects in two mixedmesophytic forest fragments. Plant Ecology, 147, 21-35.
https://doi.org/10.1023/a:1009846507652
[22]  Geiger, R. (1965). The Climate Near the Ground. Harvard University Press.
[23]  Grundstein, A., Todhunter, P., & Mote, T. (2005). Snowpack Control over the Thermal Offset of Air and Soil Temperatures in Eastern North Dakota. Geophysical Research Letters, 32, L08503.
https://doi.org/10.1029/2005gl022532
[24]  Harper, K. A., MacDonald, S. E., Burton, P. J., Chen, J., Brosofske, K. D., Saunders, S. C. et al. (2005). Edge Influence on Forest Structure and Composition in Fragmented Landscapes. Conservation Biology, 19, 768-782.
https://doi.org/10.1111/j.1523-1739.2005.00045.x
[25]  Hatcher, L., & Stepanski, E. J. (1994). A Step-by-Step Approach to Using the SAS System for Univariate and Multivariate Statistics. SAS Institute.
[26]  Heithecker, T. D., & Halpern, C. B. (2007). Edge-related Gradients in Microclimate in Forest Aggregates Following Structural Retention Harvests in Western Washington. Forest Ecology and Management, 248, 163-173.
https://doi.org/10.1016/j.foreco.2007.05.003
[27]  Hutchison, B. A., & Matt, D. R. (1977). The Distribution of Solar Radiation within a Deciduous Forest. Ecological Monographs, 47, 185-207.
https://doi.org/10.2307/1942616
[28]  Kemppinen, J., Niittynen, P., le Roux, P. C., Momberg, M., Happonen, K., Aalto, J. et al. (2021). Consistent Trait-Environment Relationships within and across Tundra Plant Communities. Nature Ecology & Evolution, 5, 458-467.
https://doi.org/10.1038/s41559-021-01396-1
[29]  Kovács, B., Tinya, F., & Ódor, P. (2017). Stand Structural Drivers of Microclimate in Mature Temperate Mixed Forests. Agricultural and Forest Meteorology, 234, 11-21.
https://doi.org/10.1016/j.agrformet.2016.11.268
[30]  Laurance, W. F., Camargo, J. L. C., Luizão, R. C. C., Laurance, S. G., Pimm, S. L., Bruna, E. M. et al. (2011). The Fate of Amazonian Forest Fragments: A 32-Year Investigation. Biological Conservation, 144, 56-67.
https://doi.org/10.1016/j.biocon.2010.09.021
[31]  Laurance, W. F., Lovejoy, T. E., Vasconcelos, H. L., Bruna, E. M., Didham, R. K., Stouffer, P. C. et al. (2002). Ecosystem Decay of Amazonian Forest Fragments: A 22‐year Investigation. Conservation Biology, 16, 605-618.
https://doi.org/10.1046/j.1523-1739.2002.01025.x
[32]  Laurance, W. F., Nascimento, H. E. M., Laurance, S. G., Andrade, A., Ewers, R. M., Harms, K. E. et al. (2007). Habitat Fragmentation, Variable Edge Effects, and the Landscape-Divergence Hypothesis. PLOS ONE, 2, e1017.
https://doi.org/10.1371/journal.pone.0001017
[33]  Lee, R. (1978). Forest Microclimatology. Columbia University Press.
[34]  Li, C., Michel, C., Seland Graff, L., Bethke, I., Zappa, G., Bracegirdle, T. J. et al. (2018). Midlatitude Atmospheric Circulation Responses under 1.5 and 2.0°C Warming and Implications for Regional Impacts. Earth System Dynamics, 9, 359-382.
https://doi.org/10.5194/esd-9-359-2018
[35]  Li, Q., Chen, J., Song, B., LaCroix, J. J., Bresee, M. K., & Radmacher, J. A. (2007). Areas Influenced by Multiple Edges and Their Implications in Fragmented Landscapes. Forest Ecology and Management, 242, 99-107.
https://doi.org/10.1016/j.foreco.2006.11.022
[36]  Łuczaj, Ł., & Sadowska, B. (1997). Edge Effect in Different Groups of Organisms: Vascular Plant, Bryophyte and Fungi Species Richness across a Forest-Grassland Border. Folia Geobotanica et Phytotaxonomica, 32, 343-353.
https://doi.org/10.1007/bf02821940
[37]  Matlack, G. R. (1993). Microenvironment Variation within and among Forest Edge Sites in the Eastern United States. Biological Conservation, 66, 185-194.
https://doi.org/10.1016/0006-3207(93)90004-k
[38]  Meeussen, C., Govaert, S., Vanneste, T., Bollmann, K., Brunet, J., Calders, K. et al. (2021). Microclimatic Edge-To-Interior Gradients of European Deciduous Forests. Agricultural and Forest Meteorology, 311, Article ID: 108699.
https://doi.org/10.1016/j.agrformet.2021.108699
[39]  Murcia, C. (1995). Edge Effects in Fragmented Forests: Implications for Conservation. Trends in Ecology & Evolution, 10, 58-62.
https://doi.org/10.1016/s0169-5347(00)88977-6
[40]  Nascimento, H. E. M., & Laurance, W. F. (2004). Biomass Dynamics in Amazonian Forest Fragments. Ecological Applications, 14, 127-138.
https://doi.org/10.1890/01-6003
[41]  Negulescu, E. G., & Stănescu, V. (1964). Dendrologia, cultura si protectia padurilor [Dendrology, Culture and Forest Protection]. Anticariat UNU.
[42]  Økland, F., Erkinaro, J., Moen, K., Niemelä, E., Fiske, P., McKinley, R. S., & Thorstad, E. B. (2001). Return Migration of Atlantic Salmon in the River Tana: Phases of Migratory Behaviour. Journal of Fish Biology, 59, 862-874.
https://doi.org/10.1006/jfbi.2001.1701
[43]  Oksanen, J. et al. (2007). The Vegan Package.
https://www.researchgate.net/profile/Gavin_Simpson/publication/228339454_The_vegan_package/links/0912f50be86bc29a7f000000.pdf
[44]  Orczewska, A., & Glista, A. (2005). Floristic Analysis of the Two Woodland-Meadow Ecotones Differing in Orientation of the Forest Edge. Polish Journal of Ecology, 53, 365-382.
[45]  Paula, M. D., Costa, C. P. A., & Tabarelli, M. (2011). Carbon Storage in a Fragmented Landscape of Atlantic Forest: The Role Played by Edge-Affected Habitats and Emergent Trees. Tropical Conservation Science, 4, 349-358.
https://doi.org/10.1177/194008291100400310
[46]  Pütz, S., Groeneveld, J., Henle, K., Knogge, C., Martensen, A. C., Metz, M. et al. (2014). Long-term Carbon Loss in Fragmented Neotropical Forests. Nature Communications, 5, Article No. 5037.
https://doi.org/10.1038/ncomms6037
[47]  Raynor, G. S. (1971). Wind and Temperature Structure in a Coniferous Forest and a Contiguous Field. Forest Science, 17, 351-363.
[48]  Riutta, T., Slade, E. M., Bebber, D. P., Taylor, M. E., Malhi, Y., Riordan, P. et al. (2012). Experimental Evidence for the Interacting Effects of Forest Edge, Moisture and Soil Macrofauna on Leaf Litter Decomposition. Soil Biology and Biochemistry, 49, 124-131.
https://doi.org/10.1016/j.soilbio.2012.02.028
[49]  Saunders, S. C., Chen, J., Drummer, T. D., & Crow, T. R. (1999). Modeling Temperature Gradients across Edges over Time in a Managed Landscape. Forest Ecology and Management, 117, 17-31.
https://doi.org/10.1016/s0378-1127(98)00468-x
[50]  Schmidt, J., Marques, M. R. G., Botti, S., & Marques, M. A. L. (2019a). Recent Advances and Applications of Machine Learning in Solid-State Materials Science. NPJ Computational Materials, 5, Article No. 83.
https://doi.org/10.1038/s41524-019-0221-0
[51]  Schmidt, M., Lischeid, G., & Nendel, C. (2019b). Microclimate and Matter Dynamics in Transition Zones of Forest to Arable Land. Agricultural and Forest Meteorology, 268, 1-10.
https://doi.org/10.1016/j.agrformet.2019.01.001
[52]  Stoutjesdijk, P., & Barkman, J. J. (1992). Microclimate, Vegetation and Fauna. Opulus Press.
[53]  Young, A., & Mitchell, N. (1994). Microclimate and Vegetation Edge Effects in a Fragmented Podocarp-Broadleaf Forest in New Zealand. Biological Conservation, 67, 63-72.
https://doi.org/10.1016/0006-3207(94)90010-8
[54]  Zar, J. H. (1984). Biostatistical Analysis (2nd ed.). Prentice-Hall, Inc.
[55]  Zellweger, F., Baltensweiler, A., Schleppi, P., Huber, M., Küchler, M., Ginzler, C. et al. (2019a). Estimating Below‐Canopy Light Regimes Using Airborne Laser Scanning: An Application to Plant Community Analysis. Ecology and Evolution, 9, 9149-9159.
https://doi.org/10.1002/ece3.5462
[56]  Zellweger, F., Coomes, D., Lenoir, J., Depauw, L., Maes, S. L., Wulf, M. et al. (2019b). Seasonal Drivers of Understorey Temperature Buffering in Temperate Deciduous Forests across Europe. Global Ecology and Biogeography, 28, 1774-1786.
https://doi.org/10.1111/geb.12991

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133