|
多种地表温度资料在青藏高原的适用性及其主要影响因子研究
|
Abstract:
本文使用2001~2016年站点观测资料评估三套地表温度再分析产品(ERA5、JRA-55和MERRA-2)在青藏高原(简称“高原”)的适用性,并分析三个气象因子(海拔、NDVI和积雪覆盖率)对高原地表温度的影响程度。基于偏差、均方根误差和相关系数指标综合比较各再分析资料对观测值的模拟情况,结果表明:MERRA-2在青藏高原适用性最好,与地表温度相关性最显著,而ERA5和JRA-55在高原适用性不佳,对地表温度偏差较大,相关性弱。通过EOF分析得到青藏高原全域地表温度呈现随年份上升的趋势,三种再分析资料对于地表温度的时空变化均与观测资料所得的结果有所差异,其中仅有MERRA-2在第二模态中青藏高原大部分区域(除西南部分区域外)的地表温度呈现随年份上升的趋势。在全年和冬季两个尺度上,海拔和积雪覆盖率因子对地表温度均为负影响,而NDVI因子对地表温度的影响随季节变化,冬季为负影响(总效果系数为?0.117),全年尺度下为正影响(0.134),三个再分析地表温度对三个因子的响应情况与观测地表温度相差不大,其中综合比较MERRA-2的响应效果与观测资料最为接近。
This paper uses station observations from 2001~2016 to assess the applicability of three surface temperature reanalysis data (ERA5, JRA-55, and MERRA-2) on the Qinghai-Xizang Platea (referred to as the “Plateau”) and to analyze the influence of three meteorological factors (elevation, NDVI, and snow cover) on surface temperatures. Based on the deviation, root-mean-square error and correlation coefficient statistical indexes and the in-situ observation data, the accuracy of the reanalysis data is comprehensively analyzed. Our findings indicate that MERRA-2 has the best applicability and shows the most significant correlation with the surface temperature, while ERA5 and JRA-55 have poor applicability on the plateau, large bias and weak correlation with the surface temperature. The EOF analysis shows that the surface temperature of the whole Plateau has been increasing over the years. However, the spatial and temporal variations of the surface temperature of three reanalysis data are different from those obtained from observations, with only MERRA-2 showing an increasing trend with years in most areas of the Plateau in the second mode (except for part of the southwestern part of the Plateau). At both the year-round and winter scales, the elevation and snow cover factors have a negative effect on surface temperature, while the effect of the NDVI factor on surface temperature varies seasonally. In winter, it has a negative effect in winter (total effect coefficient of ?0.117), while it has a positive effect at the year-round scale (0.134). Furthermore, we found that the response of the three reanalyzed surface temperatures to the three factors is similar to that of the observed surface temperatures, with MERRA-2 showing the closest response effect to observations.
[1] | 秦大河, Stocker T. IPCC第五次评估报告第一工作组报告的亮点结论[J]. 气候变化研究进展, 2014, 10(1): 1-6. |
[2] | Chen, F., Fu, B., Xia, J., Wu, D., Wu, S., Zhang, Y., et al. (2019) Major Advances in Studies of the Physical Geography and Living Environment of China during the Past 70 Years and Future Prospects. Science China Earth Sciences, 62, 1665-1701. https://doi.org/10.1007/s11430-019-9522-7 |
[3] | 吴国雄, 张永生. 青藏高原的热力和机械强迫作用以及亚洲季风的爆发*I.爆发地点[J]. 大气科学, 1998, 22(6): 22-35. |
[4] | 冯松, 汤懋苍, 王冬梅. 青藏高原是我国气候变化启动区的新证据[J]. 科学通报, 1998, 43(6): 633-636. |
[5] | 王可丽,钟强. 青藏高原地区大气顶净辐射与地表净辐射的关系[J]. 气象学报, 1995, 53(1): 101-107. |
[6] | 江灏, 王可丽, 吴国雄. 青藏高原地区地表温度及其取值对大气长波辐射冷却的影响[J]. 高原气象, 1997, 16(3): 27-34. |
[7] | Hao, J. and Keli, W. (2001) Analysis of the Surface Temperature on the Tibetan Plateau from Satellite. Advances in Atmospheric Sciences, 18, 1215-1223. https://doi.org/10.1007/s00376-001-0035-z |
[8] | 程国栋, 江灏, 王可丽, 吴青柏. 冻土路基表面的融化指数与冻结指数[J]. 冰川冻土, 2003, 25(6): 603-607. |
[9] | Zhang, P., Zheng, D., van der Velde, R., Wen, J., Zeng, Y., Wang, X., et al. (2021) Status of the Tibetan Plateau Observatory (Tibet-Obs) and a 10-Year (2009-2019) Surface Soil Moisture Dataset. Earth System Science Data, 13, 3075-3102. https://doi.org/10.5194/essd-13-3075-2021 |
[10] | Cheng, M., Zhong, L., Ma, Y., Zou, M., Ge, N., Wang, X., et al. (2019) A Study on the Assessment of Multi-Source Satellite Soil Moisture Products and Reanalysis Data for the Tibetan Plateau. Remote Sensing, 11, Article 1196. https://doi.org/10.3390/rs11101196 |
[11] | Yang, S., Li, R., Wu, T., Hu, G., Xiao, Y., Du, Y., et al. (2020) Evaluation of Reanalysis Soil Temperature and Soil Moisture Products in Permafrost Regions on the Qinghai-Tibetan Plateau. Geoderma, 377, Article 114583. https://doi.org/10.1016/j.geoderma.2020.114583 |
[12] | 王恺宁, 王修信, 黄凤荣, 罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810. |
[13] | Bengtsson, L., Hagemann, S. and Hodges, K.I. (2004) Can Climate Trends Be Calculated from Reanalysis Data? Journal of Geophysical Research: Atmospheres, 109, 1-8. https://doi.org/10.1029/2004jd004536 |
[14] | 赵天保, 符淙斌, 柯宗建, 郭维栋. 全球大气再分析资料的研究现状与进展[J]. 地球科学进展, 2010, 25(3): 242-254. |
[15] | Zhao, T., Wang, J. and Dai, A. (2015) Evaluation of Atmospheric Precipitable Water from Reanalysis Products Using Homogenized Radiosonde Observations over China. Journal of Geophysical Research: Atmospheres, 120, 10,703-10,727. https://doi.org/10.1002/2015jd023906 |
[16] | 除多, 杨勇, 罗布坚参, 边巴次仁. MERRA再分析地面气温产品在青藏高原的适用性分析[J]. 高原气象, 2016, 35(2): 337-350. |
[17] | 刘婷婷, 朱秀芳, 张世喆, 徐昆, 郭锐. ERA5再分析地面气温数据在中国区域的适用性分析[J]. 热带气象学报, 2023, 39(1): 78-88. |
[18] | 胡梦玲, 游庆龙, 林厚博. 青藏高原地区多套位势高度和风场再分析资料的对比分析[J]. 冰川冻土, 2015, 37(5): 1229-1244. |
[19] | 赵洪宇, 张雪芹, 解承莹. 多源水汽再分析资料在青藏高原的适用性评估[J]. 干旱区研究, 2017, 34(2): 300-308. |
[20] | 孙常峰, 孔繁花, 尹海伟, 闫伟姣, 许峰, 任怡静. 山区夏季地表温度的影响因素——以泰山为例[J]. 生态学报, 2014, 34(12): 3396-3404. |
[21] | Marzban, F., Sodoudi, S. and Preusker, R. (2017) The Influence of Land-Cover Type on the Relationship between NDVI-LST and LST-Tair. International Journal of Remote Sensing, 39, 1377-1398. https://doi.org/10.1080/01431161.2017.1402386 |
[22] | 江丽莎. 喀斯特城市地表温度影响因素的遥感反演与分析[D]: [硕士学位论文]. 桂林: 广西师范大学, 2014. |
[23] | 赵琴, 郝晓华, 和栋材, 王建, 李弘毅, 王旭峰. 1980~2019年北疆积雪时空变化与气候和植被的关系[J]. 遥感技术与应用, 2021, 36(6): 1247-1258. |
[24] | 任喜珍, 胡春元, 左合君, 余建. 阿尔山地区积雪消融对土壤温度的影响[J]. 干旱区资源与环境, 2010, 24(8): 122-125. |
[25] | 车涛, 郝晓华, 戴礼云, 李弘毅, 黄晓东, 肖林. 青藏高原积雪变化及其影响[J]. 中国科学院院刊, 2019, 34(11): 1247-1253. |
[26] | 马英. 青藏高原高寒草地植被返青期对季节性积雪变化的响应研究[D]: [硕士学位论文]. 兰州: 兰州大学, 2023. |
[27] | 杨芳芳. 基于多源遥感数据的青藏高原积雪与植被变化关系研究[D]: [硕士学位论文]. 北京: 中国地质大学(北京), 2022. |
[28] | 耿姗姗, 韩春花, 徐珊珊, 杨锦坤, 史潇潇, 梁建峰, 刘玉龙, 武双全. ERA5海面气压和风速再分析资料在渤海和北黄海适用性分析[J]. 海洋通报, 2023, 42(2): 159-168. |
[29] | 刘佩霞, 王军邦, 王猛, 孙晓芳, 朱躲萍. 2000-2018年三江源区归一化差植被指数数据集[J]. 中国科学数据(中英文网络版), 2023, 8(2): 213-222. |
[30] | 苗旭, 李九一, 宋小燕, 程度良, 柳玉梅. 2000-2020年鄂尔多斯市植被NDVI变化格局及归因分析[J]. 水土保持研究, 2022, 29(3): 300-307. |
[31] | 刘鑫, 王红, 陈忞, 彭昌馗, 邱宏. 近20年三江源积雪时空变化特征及影响因子分析[J]. 湖北大学学报(自然科学版), 2023, 45(2): 246-254. |
[32] | 黄栋, 李鹏, 董南. 近20a环渤海地区GS_NDVI时空分异及其对气候变化和LUCC的响应[J]. 生态环境学报, 2021, 30(12): 2275-2284. |
[33] | Li, N., Zhou, C. and Zhao, P. (2022) The Validation of Soil Moisture from Various Sources and Its Influence Factors in the Tibetan Plateau. Remote Sensing, 14, Article 4109. https://doi.org/10.3390/rs14164109 |
[34] | Xing, Z., Fan, L., Zhao, L., De Lannoy, G., Frappart, F., Peng, J., et al. (2021) A First Assessment of Satellite and Reanalysis Estimates of Surface and Root-Zone Soil Moisture over the Permafrost Region of Qinghai-Tibet Plateau. Remote Sensing of Environment, 265, Article 112666. https://doi.org/10.1016/j.rse.2021.112666 |
[35] | 毛克彪, 严毅博, 赵冰, 袁紫晋, 曹萌萌. 中国地表温度时空变化及驱动因素分析[J]. 灾害学, 2023, 38(2): 60-73. |
[36] | 丁旭, 赖欣, 范广洲, 文军, 袁源, 王欣, 王作亮, 朱丽华, 张永莉, 王炳赟. 再分析土壤温湿度资料在青藏高原地区适用性的分析[J]. 高原气象, 2018, 37(3): 626-641. |
[37] | Qin, Y., Yi, C., Dong, G. and Min, J. (2019) Investigating the Influence of Meteorological Factors on Particulate Matters: A Case Study Based on Path Analysis. Energy & Environment, 31, 479-491. https://doi.org/10.1177/0958305x19876696 |
[38] | 蒋恬田, 杨纯, 廖炜, 胡力, 刘欢瑶, 任勃, 李小马. 城市绿地景观格局影响地表温度的通径分析——以长沙市为例[J]. 生态环境学报, 2023, 32(1): 18-25. |
[39] | Huang, Y., Qi, F., Wang, R., Jia, X., Wang, Y., Lin, P., et al. (2021) The Effect of Health Literacy on Health Status among Residents in Qingdao, China: A Path Analysis. Environmental Health and Preventive Medicine, 26, Article No. 78. https://doi.org/10.1186/s12199-021-01001-8 |
[40] | Erdemsoy Karahan, B. and Izgu, N. (2023) Impact of Symptom Burden and Self‐Efficacy on Functional Status in Advanced Breast Cancer Patients: A Path Analysis. Nursing & Health Sciences, 25, 354-364. https://doi.org/10.1111/nhs.13033 |
[41] | 程博, 周显洋, 姚昆, 的的克牛, 喻磊, 樊骁. 川西高原植被NDVI变化研究[J]. 河南科技, 2023, 42(13): 94-98. |
[42] | 除多, 达娃, 拉巴卓玛, 徐维新, 张娟. 基于MODIS数据的青藏高原积雪时空分布特征分析[J]. 国土资源遥感, 2017, 29(2): 117-124. |
[43] | 冯金爽, 孙颖娜. 永翠河流域积雪覆盖及植被NDVI时空变化分析[J]. 黑龙江大学工程学报, 2022, 13(3): 15-20. |
[44] | 朱智, 师春香, 谷军霞, 梁晓. 近10a来青藏高原地表温度时空变化特征分析[J]. 科学技术与工程, 2020, 20(10): 3828-3837. |
[45] | 朱伊, 范广洲, 华维, 王倩茹. 1981-2015年青藏高原地表温度的时空变化特征分析[J]. 西南大学学报(自然科学版), 2018, 40(11): 127-140. |