Load shedding is a major problem in Central Africa, with negative consequences for both society and the economy. However, load profile analysis can help to alleviate this problem by providing valuable information about consumer demand. This information can be used by power utilities to forecast and reduce power cuts effectively. In this study, the direct method was used to create load profiles for residential feeders in Kinshasa. The results showed that load shedding on weekends results in significant financial losses and changes in people’s behavior. In November 2022 alone, load shedding was responsible for $ 23,4?08,984 and $ 2?80,9?07,808 for all year in losses. The study also found that the SAIDI index for the southern direction of the Kinshasa distribution network was 122.49 hours per feeder, on average. This means that each feeder experienced an average of 5 days of load shedding in November 2022. The SAIFI index was 20 interruptions per feeder, on average, and the CAIDI index was 6 hours, on average, before power was restored. This study also proposes ten strategies for the reduction of load shedding in the Kinshasa and central Africa power distribution network and for the improvement of its reliability, namely: Improved load forecasting, Improvement of the grid infrastructure, Scheduling of load shedding, Demand management programs, Energy efficiency initiatives, Distributed Generation, Automation and Monitoring of the Grid, Education and engagement of the consumer, Policy and regulatory assistance, and Updated load profile analysis.
References
[1]
Oyedepo, S.O., Babalola, O.P., Nwanya, S.C., Kilanko, O., Leramo, R.O., Aworinde, A.K., et al. (2018) Towards a Sustainable Electricity Supply in Nigeria: The Role of Decentralized Renewable Energy System. European Journal of Sustainable Development Research, 2, Article No. 40. https://doi.org/10.20897/ejosdr/3908
[2]
Proedrou, E. (2021) A Comprehensive Review of Residential Electricity Load Profile Models. IEEE Access, 9, 12114-12133. https://doi.org/10.1109/access.2021.3050074
[3]
García Vera, Y.E., Dufo-López, R. and Bernal-Agustín, J.L. (2019) Energy Management in Microgrids with Renewable Energy Sources: A Literature Review. Applied Sciences, 9, Article No. 3854. https://doi.org/10.3390/app9183854
[4]
Nystrup, P., Madsen, H., Blomgren, E.M.V. and de Zotti, G. (2021) Clustering Commercial and Industrial Load Patterns for Long-Term Energy Planning. Smart Energy, 2, Article 100010. https://doi.org/10.1016/j.segy.2021.100010
[5]
Mostafa, N., Ramadan, H.S.M. and Elfarouk, O. (2022) Renewable Energy Management in Smart Grids by Using Big Data Analytics and Machine Learning. Machine Learning with Applications, 9, Article 100363. https://doi.org/10.1016/j.mlwa.2022.100363
[6]
Wang, Y., Chen, Q., Kang, C., Zhang, M., Wang, K. and Zhao, Y. (2015) Load Profiling and Its Application to Demand Response: A Review. Tsinghua Science and Technology, 20, 117-129. https://doi.org/10.1109/tst.2015.7085625
[7]
Manembu, P.D.K., Kewo, A., Bramstoft, R. and Nielsen, P.S. (2023) A Systematicity Review on Residential Electricity Load-Shifting at the Appliance Level. Energies, 16, Article No. 7828. https://doi.org/10.3390/en16237828
[8]
Basu, S., Mishra, K. and Maulik, U. (2012) Analyzing Load Profiles in Commercial Buildings Using Smart Meter Data. In: Ploix, S., Amayri, M. and Bouguila, N., Eds., Towards Energy Smart Homes, Springer International Publishing, 463-487. https://doi.org/10.1007/978-3-030-76477-7_15
[9]
Anvari, M., Proedrou, E., Schäfer, B., Beck, C., Kantz, H. and Timme, M. (2022) Data-Driven Load Profiles and the Dynamics of Residential Electricity Consumption. Nature Communications, 13, Article No. 4593. https://doi.org/10.1038/s41467-022-31942-9
[10]
Grandjean, A., Adnot, J. and Binet, G. (2012) A Review and an Analysis of the Residential Electric Load Curve Models. Renewable and Sustainable Energy Reviews, 16, 6539-6565. https://doi.org/10.1016/j.rser.2012.08.013
[11]
Geikins, A., Borodinecs, A. and Jacnevs, V. (2022) Estimation of Energy Profile and Possible Energy Savings of Unclassified Buildings. Buildings, 12, Article 974. https://doi.org/10.3390/buildings12070974
[12]
Chen, X., Wang, J., Xie, J., Xu, S., Yu, K. and Gan, L. (2018) Demand Response Potential Evaluation for Residential Air Conditioning Loads. IET Generation, Transmission & Distribution, 12, 4260-4268. https://doi.org/10.1049/iet-gtd.2018.5299
[13]
Zhou, S., Li, Y., Jiang, C., Xiong, Z., Zhang, J. and Wang, L. (2023) Enhancing the Resilience of the Power System to Accommodate the Construction of the New Power System: Key Technologies and Challenges. Frontiers in Energy Research, 11, Article 1256850. https://doi.org/10.3389/fenrg.2023.1256850
[14]
Aslam, S., Herodotou, H. and Ashraf, N. (2023) Smart Grid Analytics for Sustainability and Urbanization in Big Data. https://doi.org/10.3390/books978-3-0365-9172-8
[15]
Rodrigues, F., Cardeira, C., Calado, J.M.F. and Melício, R. (2016) Energy Household Forecast with ANN for Demand Response and Demand Side Management. Renewable Energy and Power Quality Journal, 1, 1016-1019. https://doi.org/10.24084/repqj14.559
[16]
Humphrey Mutambo, M., Kawimbe, S., Meki-Kombe, C. and Mwange, A. (2023) Impact of Electricity Load Shedding on Operations of Small-Scale Enterprises in Selected Developing Countries: A Review of Literature. Journal of Economics and Sustainable Development, 14, 54-82.
[17]
Wang, S., Liu, H., Pu, H. and Yang, H. (2020) Spatial Disparity and Hierarchical Cluster Analysis of Final Energy Consumption in China. Energy, 197, Article 117195. https://doi.org/10.1016/j.energy.2020.117195
[18]
Pillai, G.G., Putrus, G.A. and Pearsall, N.M. (2014) Generation of Synthetic Benchmark Electrical Load Profiles Using Publicly Available Load and Weather Data. International Journal of Electrical Power & Energy Systems, 61, 1-10. https://doi.org/10.1016/j.ijepes.2014.03.005
[19]
Bellinguer, K., Girard, R., Bocquet, A. and Chevalier, A. (2023) ELMAS: A One-Year Dataset of Hourly Electrical Load Profiles from 424 French Industrial and Tertiary Sectors. Scientific Data, 10, Article No. 686. https://doi.org/10.1038/s41597-023-02542-z
[20]
Voulis, N., Warnier, M. and Brazier, F.M.T. (2017) Impact of Service Sector Loads on Renewable Resource Integration. Applied Energy, 205, 1311-1326. https://doi.org/10.1016/j.apenergy.2017.07.134
[21]
Thang, V.U. (2011) Répartition des moyens complémentaires de production et de stockage dans les réseaux faiblement interconnectés ou isolés. Université de Grenoble.
[22]
Zubidi, A.N., Ismail, B., Ali Al Hamrounni, I.M., Abd Rahman, N.H. and Mohd Rozlan, M.H.H. (2023) The Impact of Integrating Multi-Microgrid System with FACTS Devices for Voltage Profile Enhancement and Real Power Loss Reduction in Power System: A Review. Pertanika Journal of Science and Technology, 31, 633-653. https://doi.org/10.47836/pjst.31.2.01
Mbembati, H., Ibwe, K. and Maiseli, B. (2023) Maintenance Scheduling Algorithm for Transformers in Tanzania Electrical Secondary Distribution Networks. Tanzania Journal of Science, 49, 167-182. https://doi.org/10.4314/tjs.v49i1.15
[25]
Department of Infrastructure and Energy (2019) Africa Energy Database, Algiers.
[26]
Devilers, C. and Grifnée, F. (2014) Pénurie d’électricité, Délestage, Black-Out... Operator of the Gas and Electricity Networks. Louvain-la-Neuve. https://media.ores.be/ores-cms/ufjnvb3l/ores_penurie_guide_pratique_fr.pdf
[27]
Tchuidjan, R., Hamandjoda, O. and Tabe, M. (2023) Réduction des pertes de puissance dans un réseau de distribution alimenté par un générateur d’énergie nouvelle et renouvelable. Journal of Renewable Energies, 14, 449-459. https://doi.org/10.54966/jreen.v14i3.272
[28]
Lu, W. (2009) Le délestage optimal pour la prévention des grandes pannes d’électricité. Institut Polytechnique de Grenoble. https://theses.hal.science/tel-00405654
[29]
Timplalexis, C., Angelis, G., Zikos, S., Krinidis, S., Ioannidis, D. and Tzovaras, D. (2022) A Comprehensive Review on Industrial Demand Response Strategies and Applications. In: Alhelou, H.H., Moreno-Muñoz, A. and Siano, P., Eds., Industrial Demand Response: Methods, Best Practices, Case Studies, and Applications, Institution of Engineering and Technology, 1-23. https://doi.org/10.1049/pbpo215e_ch1
[30]
He, L. and Liu, N. (2017) Load Profile Analysis for Commercial Buildings Microgrids under Demand Response. 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, 18-20 June 2017, 461-465. https://doi.org/10.1109/iciea.2017.8282889
[31]
Chattamvelli, R. and Shanmugam, R. (2023) Descriptive Statistics for Scientists and Engineers. Springer.
[32]
Spiegel, M.R. and Stephens, L.J. (2008) Theory and Problems of Statistics. 4th Edition, McGraw-Hill.
[33]
Leboucher, L. and Voisin, M.-J. (2011) Introduction à la statistique descriptive. CEPADUES.
[34]
Selvamuthu, D. and Das, D. (2018) Introduction to Statistical Methods, Design of Experiments and Statistical Quality Control. Singapore. https://doi.org/10.1007/978-981-99-9363-5
[35]
Nazaruddin, Mahalla, Fauzi, Maimun, Subhan, Abubakar, S., et al. (2020) Reliability Analysis of 20 KV Electric Power Distribution System. IOP Conference Series: Materials Science and Engineering, 854, Article 012007. https://doi.org/10.1088/1757-899x/854/1/012007
[36]
IEEE-SA Standards Board (2004) IEEE Guide for Electric Power Distribution Reliability Indices. New York. https://doi.org/10.1109/IEEESTD.2001.94438