全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparative Study between Dielectric Properties and Compaction Parameters: Case Study on Three Laterite Quarries

DOI: 10.4236/ojg.2024.148032, PP. 746-759

Keywords: Radar, Laterite, Moisture Content, Dry Density, Permittivity, Geotechnical Properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work studies the variability of the relationship between relative permittivity and compaction parameters as a function of certain geotechnical properties for different laterite types. This study allows to purpose the dielectric permittivity as a third compaction parameter allowing to obtain a non destructive control méthod. Preliminary studies on Diack laterite had shown a good correlation. Additional investigations are carried out to verify the possibility of generalizing this correlation to three new laterite careers: Ngoudiane, Yéba and Fandene. To proceed, particle size analysis, Atterberg limits, specific weight tests and compaction according to the modified Proctor test were performed on laterite samples. Using the radar method, experimental permittivities are determined for laterite samples by the point method of propagation times and confirmed by the diffraction hyperbole method. The geotechnical and radar data obtained allowed correlations between permittivity and water content on the one hand and between permittivity and dry density on the other. The results show that the maximum dry density as a function of permittivity corresponds with the optimum Proctor, which confirms the results previously obtained on Diack laterite.

References

[1]  Massamba, N. (2013) Contribution à l’étude de sols latéritiques du Sénégal et du Brésil. Doctoral Dissertation, Université Paris-Est et Université Cheikh Anta Diop (Dakar).
[2]  Ndiaye, M., Ba, M., Kiendrebeogo, T. and Foudjo, L.E.G. (2023) Relative Dielectric Permittivity Variations during Compaction as a Mean of Compaction Quality Control: Case Study on Laterite Samples from Senegal. International Journal of Geosciences, 14, 238-250.
https://doi.org/10.4236/ijg.2023.142012
[3]  Ground Penetrating, R. (2009) Ground Penetrating Radar: Theory and Applications.
[4]  Vincent, G. (2019) Lois d’homogénéisation en électromagnétisme pour l’estimation de la teneur en eau des bétons. Academic Journal of Civil Engineering, 37, 410-418.
[5]  Jerˆome, F., et al. (2012) Analyses granulométriques. Principes et méthodes.
[6]  Norme, N.F. (1993) Reconnaissance et essai de détermination des limites d’Atterberg.
[7]  Norme, A. (1991) Détermination de la masse volumique de particules solides des sols. Méthode du pycnomètre à eau.
[8]  Robert, M. and Delorme, J.-L. (2010) Comparaison des essais Proctor selon la norme NF et selon la norme EN.
[9]  Belkadid, J., Bennani, S.D. and Rifi, M. (2006) Amélioration de la sensibilité de détection et de la qualité du radargramme d’un radar pénétrant GPR par une modulation micro-onde. Annals of Telecommunications, 61, 565-577.
https://doi.org/10.1007/bf03219923
[10]  Huray, P.G. (2009) Maxwell’s Equations. Wiley.
[11]  Messaouda, K., Bouzar, S. and Brahmi, G. (2021) Caractérisation d’un sous-sol par méthode géoradar (GPR), Application pour le cas de la ville d’Alger.
[12]  Juho, R. (2012) SIR-3000-maatutkan soveltuvuus teräsbetonirakenteiden tutkimiseen.
[13]  Xavier, D., et al. (2001) Performances de radars d’auscultation des chaussées sur des sites tests. Bulletin-Laboratoires des Ponts et Chaussees, 2001, 15-22.
[14]  Yuan, H., Montazeri, M., Looms, M.C. and Nielsen, L. (2019) Diffraction Imaging of Ground-Penetrating Radar Data. Geophysics, 84, H1-H12.
https://doi.org/10.1190/geo2018-0269.1
[15]  Mevel, J. (1976) Procédure de reconnaissance des formes a l’aide d’un radar monostatique. Annales Des Télécommunications, 31, 111-118.
https://doi.org/10.1007/bf02997593
[16]  Giannopoulos, A. (2005) Modelling Ground Penetrating Radar by Gprmax. Construction and Building Materials, 19, 755-762.
https://doi.org/10.1016/j.conbuildmat.2005.06.007
[17]  Yigit, E., Sabanci, K., Toktas, A., Ustun, D. and Duysak, H. (2018). Grain Moisture Detection by Using A-Scan Radar Measurement. 2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, Tbilisi, 24-27 September 2018, 222-224.
https://doi.org/10.1109/diped.2018.8543311
[18]  Özdemir, C., Demirci, Ş., Yiğit, E. and Yilmaz, B. (2014) A Review on Migration Methods in B-Scan Ground Penetrating Radar Imaging. Mathematical Problems in Engineering, 2014, 1-16.
https://doi.org/10.1155/2014/280738

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133