|
血清IL-33、IL-37对不同水平血嗜酸性粒细胞的慢性阻塞性肺疾病患者肺功能的预测价值及相关性分析
|
Abstract:
目的:分析血清IL-33及IL-37对不同水平血嗜酸性粒细胞的慢性阻塞性肺疾病患者肺功能的预测价值及相关性。方法:采用ELISA法检测IL-33、IL-37、CRP及PCT在30例嗜酸性粒细胞丰富组患者、30例嗜酸性粒细胞中间组患者、34例嗜酸性粒细胞匮乏组患者及30例健康体检者血清中的表达情况,采用肺功能仪检测30例嗜酸性粒细胞丰富组患者、30例嗜酸性粒细胞中间组患者、34例嗜酸性粒细胞匮乏组患者及30例健康体检者的FEV1%pred及FEV1/FVC。结果:COPD组患者血清IL-33、IL-37、CRP及PCT表达水平较健康对照组显著升高,肺功能指标FEV1%pred及FEV1/FVC较对照组显著降低(P < 0.05)。随着COPD患者嗜酸性粒细胞计数增多,血清IL-33、IL-37、CRP及PCT表达水平进一步升高,肺功能指标FEV1%pred及FEV1/FVC进一步降低(P < 0.05)。COPD组患者的血清IL-33及IL-37的表达水平与CRP及PCT表达水平呈正相关(P < 0.05),与FEV1%pred、FEV1/FVC呈负相关(P < 0.05)。结论:IL-33及IL-37和COPD的进展可能存在密切相关,可能成为临床COPD临床诊断及病情严重程度评估的新指标以及为临床治疗提供新的干预靶点。
Objective: To analyze the predictive value and correlation of serum IL-33 and IL-37 in patients with chronic obstructive pulmonary disease (COPD) with different levels of blood eosinophils in predicting lung function. Methods: Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression of IL-33, IL-37, C-reactive protein (CRP), and procalcitonin (PCT) in the serum of 30 patients with high eosinophil counts, 30 patients with moderate eosinophil counts, 34 patients with low eosinophil counts, and 30 healthy individuals. Lung function was assessed by measuring forced expiratory volume in one second as a percentage of predicted (FEV1%pred) and the ratio of FEV1 to forced vital capacity (FEV1/FVC) using a spirometer in the same groups. Results: The expression levels of serum IL-33, IL-37, CRP, and PCT in the COPD group were significantly higher than those in the healthy control group (P < 0.05), while lung function indicators FEV1%pred and FEV1/FVC were significantly lower than those in the control group (P < 0.05). With the increase in eosinophil counts in COPD patients, the expression levels of serum IL-33, IL-37, CRP, and PCT further increased, and lung function indicators FEV1%pred and FEV1/FVC further decreased (P < 0.05). The expression levels of serum IL-33 and IL-37 in COPD patients were positively correlated with the expression levels of CRP and PCT (P < 0.05) and negatively correlated with FEV1%pred and FEV1/FVC (P < 0.05). Conclusion: IL-33 and IL-37 may be closely related to the progression of COPD and may become new indicators for clinical diagnosis and assessment of disease severity in COPD, as well as providing new targets for clinical intervention.
[1] | 张曼, 刘雅, 孙伟民. 慢性阻塞性肺疾病发病机制研究进展[J]. 临床医学进展, 2021, 11(6): 2685-2688. |
[2] | Jones, B., Donovan, C., Liu, G., Gomez, H.M., Chimankar, V., Harrison, C.L., et al. (2016) Animal Models of COPD: What Do They Tell Us? Respirology, 22, 21-32. https://doi.org/10.1111/resp.12908 |
[3] | Gorska, K., Nejman-Gryz, P., Paplinska-Goryca, M., Korczynski, P., Prochorec-Sobieszek, M. and Krenke, R. (2018) Comparative Study of IL-33 and IL-6 Levels in Different Respiratory Samples in Mild-to-Moderate Asthma and COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 15, 36-45. https://doi.org/10.1080/15412555.2017.1416074 |
[4] | 徐珍, 梁姗姗, 刘甡, 鲍文华, 孙云晖. COPD患者血清中IL-37水平变化及临床意义[J]. 黑龙江医药科学, 2016, 39(3): 21-22. |
[5] | Göpfert, C., Andreas, N., Weber, F., Häfner, N., Yakovleva, T., Gaestel, M., et al. (2018) The P38-Mk2/3 Module Is Critical for IL-33-Induced Signaling and Cytokine Production in Dendritic Cells. The Journal of Immunology, 200, 1198-1206. https://doi.org/10.4049/jimmunol.1700727 |
[6] | 袁立燕, 谢杰, 薛汝增, 谷梅, 杨斌. 白细胞介素37的免疫学研究进展[J]. 皮肤性病诊疗学杂志, 2016, 23(4): 280-284. |
[7] | Pavord, I.D., Lettis, S., Anzueto, A. and Barnes, N. (2016) Blood Eosinophil Count and Pneumonia Risk in Patients with Chronic Obstructive Pulmonary Disease: A Patient-Level Meta-Analysis. The Lancet Respiratory Medicine, 4, 731-741. https://doi.org/10.1016/s2213-2600(16)30148-5 |
[8] | Adeloye, D., Song, P., Zhu, Y., Campbell, H., Sheikh, A. and Rudan, I. (2022) Global, Regional, and National Prevalence of, and Risk Factors for, Chronic Obstructive Pulmonary Disease (COPD) in 2019: A Systematic Review and Modelling Analysis. The Lancet Respiratory Medicine, 10, 447-458. https://doi.org/10.1016/s2213-2600(21)00511-7 |
[9] | Fang, X., Wang, X. and Bai, C. (2011) COPD in China: The Burden and Importance of Proper Management. Chest, 139, 920-929. https://doi.org/10.1378/chest.10-1393 |
[10] | 林玛丽, 蔡旭龙, 冯巍巍, 曹珊, 林娜, 刘运广. 白细胞介素-33在慢性呼吸系统疾病中的作用研究进展[J]. 广西医学, 2017, 39(7): 1053-1056. |
[11] | 牛莎. 血清因子与免疫因子对慢性阻塞性肺疾病患者肺功能与病情影响的研究[J]. 医学理论与实践, 2020, 33(23): 3886-3888. |
[12] | Di Salvo, E., Ventura-Spagnolo, E., Casciaro, M., Navarra, M. and Gangemi, S. (2018) IL-33/IL-31 Axis: A Potential Inflammatory Pathway. Mediators of Inflammation, 2018, Article ID: 3858032. https://doi.org/10.1155/2018/3858032 |
[13] | Nakamura, N., Tamagawa-Mineoka, R., Yasuike, R., Masuda, K., Matsunaka, H., Murakami, Y., et al. (2019) Stratum Corneum Interleukin-33 Expressions Correlate with the Degree of Lichenification and Pruritus in Atopic Dermatitis Lesions. Clinical Immunology, 201, 1-3. https://doi.org/10.1016/j.clim.2019.02.006 |
[14] | Duan, L., Chen, J., Zhang, H., Yang, H., Zhu, P., Xiong, A., et al. (2012) Interleukin-33 Ameliorates Experimental Colitis through Promoting Th2/foxp3+ Regulatory T-Cell Responses in Mice. Molecular Medicine, 18, 753-761. https://doi.org/10.2119/molmed.2011.00428 |
[15] | Rudloff, I., Ung, H.K., Dowling, J.K., Mansell, A., D’Andrea, L., Ellisdon, A.M., et al. (2020) Parsing the IL-37-Mediated Suppression of Inflammasome Function. Cells, 9, Article No. 178. https://doi.org/10.3390/cells9010178 |
[16] | 高胜男, 林江涛. IL-37的抗炎作用机制及其在哮喘中的研究进展[J]. 中华微生物学和免疫学杂志, 2021, 41(6): 488-492. |
[17] | 李慧敏, 罗红, 周湧. 慢性阻塞性肺疾病患者IL-37与IL-6, IL-17相关性研究[J]. 实用预防医学, 2020, 27(4): 506-508. |
[18] | Ernst, O., Vayttaden, S.J. and Fraser, I.D.C. (2017) Measurement of NF-κB Activation in TLR-Activated Macrophages. In: De Nardo, D. and De Nardo, C.M., Eds., Innate Immune Activation: Methods and Protocols, Springer, Berlin, 67-78. https://doi.org/10.1007/978-1-4939-7519-8_5 |