|
青海地区miRNA在缺血性脑卒中中作用的研究进展
|
Abstract:
缺血性脑卒中(ischemic stroke, IS)又俗称“中风”是一种很严重且危害中老年人身体健康的心脑血管病,它是全球发病率最高的一种疾病,同时具有很高的致残率和死亡率。miRNA (microRNA又称:微小核糖核酸)是一种内源性基因编码的长度为19~25 nt非编码的单链RNA分子且在动植物中进行转录后从而参与基因表达调控。近年来大量研究表明miRNA不但参与调控大部分生物学的过程,而且和许多疾病的发展存在着密切的关系。本文主要探讨青海地区miRNA与IS关系的研究进展。
Ischemic stroke (IS), also known as “stroke”, is a serious cardiovascular and cerebrovascular disease that jeopardizes the health of middle-aged and elderly people with the highest incidence in the world, it has a high rate of disability and mortality. miRNA (microRNA also known as microRNAs) are 19~25 nt non-coding single-stranded RNA molecules encoded by endogenous genes that are transcribed in plants and animals to participate in regulation of gene expression. Recent studies have shown that the miRNA are not only involved in most biological processes, but also closely related to the development of many diseases. This paper mainly discusses the research progress of the relationship between miRNA and IS in Qinghai region.
[1] | 马明仁, 庄凯鹏, 王菲, 等. 高原低氧环境致心血管系统损伤与微小RNA的研究进展[J]. 中国心血管杂志, 2022, 27(5): 481-485. |
[2] | 吴世政. 高原脑血管病——一个值得关注的神经病学特殊领域[J]. 中国卒中杂志, 2007(12): 965-968. |
[3] | 丁文正, 周青华, 曲荣波. 急性缺血性脑卒中血栓组织学及对临床干预影响的研究进展[J]. 中风与神经疾病杂志, 2023, 40(10): 957-960. |
[4] | 田灿辉(综述), 周亮(审校). miRNA与缺血性脑卒中关系的研究进展[J]. 重庆医学, 2016, 45(16): 2276-2279. |
[5] | 韦奇, 覃少东. miRNA与缺血性脑卒中关系的研究进展[J]. 中国当代医药, 2018, 25(23): 42-46. |
[6] | 朱天宇, 陈丽霞. miRNA在缺血性脑卒中的病因、治疗、风险预测中的作用[J]. 心血管康复医学杂志, 2020, 29(4): 492-494. |
[7] | Tan, J.R., Koo, Y.X., Kaur, P., Liu, F., Armugam, A.T.-H., Wong, P. and Jeyaseelan, K. (2011) MicroRNAs in Stroke Pathogenesis. Current Molecular Medicine, 11, 76-92. https://doi.org/10.2174/156652411794859232 |
[8] | Xu, W., Gao, L., Zheng, J., Li, T., Shao, A., Reis, C., Chen, S. and Zhang, J. (2018) The Roles of MicroRNAs in Stroke: Possible Therapeutic Targets. Cell Transplantation, 27, 1778-1788. https://doi.org/10.1177/0963689718773361 |
[9] | Bulygin, K.V., Beeraka, N.M., Saitgareeva, A.R., Nikolenko, V.N., Gareev, I., Beylerli, O., et al. (2020) Can miRNAs Be Considered as Diagnostic and Therapeutic Molecules in Ischemic Stroke Pathogenesis?—Current Status. International Journal of Molecular Sciences, 21, Article 6728. https://doi.org/10.3390/ijms21186728 |
[10] | Tuttolomondo, A., Puleo, M.G., Velardo, M.C., Corpora, F., Daidone, M. and Pinto, A. (2020) Molecular Biology of Atherosclerotic Ischemic Strokes. International Journal of Molecular Sciences, 21, Article 9372. https://doi.org/10.3390/ijms21249372 |
[11] | Zhang, J., Li, A., Gu, R., Tong, Y. and Cheng, J. (2023) Role and Regulatory Mechanism of MicroRNA Mediated Neuroinflammation in Neuronal System Diseases. Frontiers in Immunology, 14, Article 1238930. https://doi.org/10.3389/fimmu.2023.1238930 |
[12] | Voelz, C., Ebrahimy, N., Zhao, W., Habib, P., Zendedel, A., Pufe, T., Beyer, C. and Slowik, A. (2021) Transient Focal Cerebral Ischemia Leads to miRNA Alterations in Different Brain Regions, Blood Serum, Liver, and Spleen. International Journal of Molecular Sciences, 23, Article 161. https://doi.org/10.3390/ijms23010161 |
[13] | Li, K., Shen, L., Zheng, P., Wang, Y., Wang, L., Meng, X., et al. (2021) Identification of MicroRNAs as Potential Biomarkers for Detecting Ischemic Stroke. Genes & Genomics, 44, 9-17. https://doi.org/10.1007/s13258-021-01060-9 |
[14] | Liang, Z., Chi, Y.J., Lin, G.Q., et al. (2018) MiRNA-26a Promotes Angiogenesis in a Rat Model of Cerebral Infarction via PI3K/AKT and MAPK/ERK Pathway. European Review for Medical and Pharmacological Sciences, 22, 3485-3492. |
[15] | Fullerton, J.L., Thomas, J.M., Gonzalez-Trueba, L., Trivett, C., van Kralingen, J.C., Allan, S.M., et al. (2022) Systematic Review: Association between Circulating MicroRNA Expression & Stroke. Journal of Cerebral Blood Flow & Metabolism, 42, 935-951. https://doi.org/10.1177/0271678x221085090 |
[16] | Yin, K., Hamblin, M. and Chen, Y. (2015) Angiogenesis-Regulating MicroRNAs and Ischemic Stroke. Current Vascular Pharmacology, 13, 352-365. https://doi.org/10.2174/15701611113119990016 |
[17] | Zhao, Y., Gan, L., Ren, L., Lin, Y., Ma, C. and Lin, X. (2022) Factors Influencing the Blood-Brain Barrier Permeability. Brain Research, 1788, Article 147937. https://doi.org/10.1016/j.brainres.2022.147937 |
[18] | Zingale, V.D., Gugliandolo, A. and Mazzon, E. (2021) MiR-155: An Important Regulator of Neuroinflammation. International Journal of Molecular Sciences, 23, Article 90. https://doi.org/10.3390/ijms23010090 |
[19] | Rastegar-Moghaddam, S.H., Ebrahimzadeh-Bideskan, A., Shahba, S., et al. (2022) Roles of the miR-155 in Neuroinflammation and Neurological Disorders: A Potent Biological and Therapeutic Target. Cellular and Molecular Neurobiology, 43, 455-467. https://doi.org/10.1007/s10571-022-01200-z |
[20] | 张家康, 王枭雄, 陈鑫, 等. 急性缺血性脑卒中中循环miRNA的相关研究进展[J]. 卒中与神经疾病, 2016, 23(3): 213-215. |
[21] | Huang, S., Zhou, S., Zhang, Y., et al. (2015) Association of the Genetic Polymorphisms in Pre-MicroRNAs with Risk of Ischemic Stroke in a Chinese Population. PLOS ONE, 10, e0117007. https://doi.org/10.1371/journal.pone.0117007 |
[22] | Barrera-Vazquez, O.S., Gomez-Verjan, J.C., Ramirez-Aldana, R., et al. (2022) Structural and Pharmacological Network Analysis of miRNAs Involved in Acute Ischemic Stroke: A Systematic Review. International Journal of Molecular Sciences, 23, Article 4663. https://doi.org/10.3390/ijms23094663 |