|
胃癌的治疗性免疫调节
|
Abstract:
胃癌是一种消化系统恶性肿瘤,是世界第六大最常见的癌症,也是与肿瘤疾病死亡的第二大原因。免疫治疗药物的出现和发展为胃癌患者带来了显著的生存优势,同时也对传统药物治疗模式提出了挑战。近年来,特别是免疫检查点抑制剂作为一种新兴的治疗方式,它通过阻断特定的信号通路,特别是CTLA4通路和PD-1/PD-L1通路发挥作用。本文主要概述了晚期GC免疫治疗的最新进展,包括免疫检查点抑制剂、癌症疫苗、血管内皮生长因子-A抑制剂和嵌合抗原受体T细胞治疗。
Gastric cancer, a malignant tumor of the digestive system, is the sixth most common cancer in the world and the second leading cause of death associated with oncological disease. The emergence and development of immunotherapy drugs have brought significant survival advantages to gastric cancer patients, but also challenged the traditional drug treatment model. In recent years, immune checkpoint inhibitors in particular have emerged as an emerging therapeutic modus operandi, which work by blocking specific signaling pathways, especially the CTLA4 pathway and the PD-1/PD-L1 pathway. This article mainly reviews the recent advances in advanced GC immunotherapy, including immune checkpoint inhibitors, cancer vaccines, vascular endothelial growth factor-A inhibitors, and chimeric antigen receptor T cell therapy.
[1] | Zhao, L., Liu, Y., Zhang, S., Wei, L., Cheng, H., Wang, J. and Wang, J. (2022) Impacts and Mechanisms of Metabolic Reprogramming of Tumor Microenvironment for Immunotherapy in Gastric Cancer. Cell Death & Disease, 13, Article No. 378. https://doi.org/10.1038/s41419-022-04821-w |
[2] | Kindlund, B., Sjoling, A., Yakkala, C., Adamsson, J., Janzon, A., Hansson, L.E., Hermansson, M., Janson, P., Winqvist, O. and Lundin, S.B. (2017) CD4 Regulatory T Cells in Gastric Cancer Mucosa Are Proliferating and Express High Levels of IL-10 but Little TGF-β. Gastric Cancer, 20, 116-125. https://doi.org/10.1007/s10120-015-0591-z |
[3] | Negura, I., Pavel-Tanasa, M. and Danciu, M. (2023) Regulatory T Cells in Gastric Cancer: Key Controllers from Pathogenesis to Therapy. Cancer Treatment Reviews, 120, Article 102629. https://doi.org/10.1016/j.ctrv.2023.102629 |
[4] | Akkanapally, V., Bai, X.F. and Basu, S. (2024) Therapeutic Immunomodulation in Gastric Cancer. Cancers, 16, Article 560. https://doi.org/10.3390/cancers16030560 |
[5] | Jin, X., Liu, Z., Yang, D., Yin, K. and Chang, X. (2022) Recent Progress and Future Perspectives of Immunotherapy in Advanced Gastric Cancer. Frontiers in Immunology, 13, Article 948647. https://doi.org/10.3389/fimmu.2022.948647 |
[6] | Abdel-Rahman, O. (2016) Immune Checkpoints Aberrations and Gastric Cancer; Assessment of Prognostic Value and Evaluation of Therapeutic Potentials. Critical Reviews in Oncology/Hematology, 97, 65-71. https://doi.org/10.1016/j.critrevonc.2015.08.015 |
[7] | Wilke, H., Muro, K., Van Cutsem, E., Oh, S.C., Bodoky, G., Shimada, Y., Hironaka, S., Sugimoto, N., Lipatov, O., Kim, T.Y., et al. (2014) Ramucirumab Plus Paclitaxel versus Placebo Plus Paclitaxel in Patients with Previously Treated Advanced Gastric or Gastro-Oesophageal Junction Adenocarcinoma (RAINBOW): A Double-Blind, Randomised Phase 3 Trial. The Lancet Oncology, 15, 1224-1235. https://doi.org/10.1016/S1470-2045(14)70420-6 |
[8] | Solomon, B.L. and Garrido-Laguna, I. (2018) Upper Gastrointestinal Malignancies in 2017, Current Perspectives and Future Approaches. Future Oncology, 14, 947-962. https://doi.org/10.2217/fon-2017-0597 |
[9] | Kang, Y.K., Boku, N., Satoh, T., Ryu, M.H., Chao, Y., Kato, K., Chung, H.C., Chen, J.S., Muro, K., Kang, W.K., et al. (2017) Nivolumab in Patients with Advanced Gastric or Gastro-Oesophageal Junction Cancer Refractory to, or Intolerant of, at Least Two Previous Chemotherapy Regimens (ONO-4538-12, ATTRACTION-2): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet, 390, 2461-2471. https://doi.org/10.1016/S0140-6736(17)31827-5 |
[10] | Yang, L., Wang, Y. and Wang, H. (2019) Use of Immunotherapy in the Treatment of Gastric Cancer. Oncology Letters, 18, 5681-5690. https://doi.org/10.3892/ol.2019.10935 |
[11] | Bang, Y.J., Golan, T., Dahan, L., Fu, S., Moreno, V., Park, K., Geva, R., De Braud, F., Wainberg, Z.A., Reck, M., et al. (2020) Ramucirumab and Durvalumab for Previously Treated, Advanced Non-Small-Cell Lung Cancer, Gastric/Gastro-Oesophageal Junction Adenocarcinoma, or Hepatocellular Carcinoma: An Open-Label, Phase Ia/b Study (JVDJ). European Journal of Cancer, 137, 272-284. https://doi.org/10.1016/j.ejca.2020.06.007 |
[12] | Moehler, M., Dvorkin, M., Boku, N., Ozguroglu, M., Ryu, M.H., Muntean, A.S., Lonardi, S., Nechaeva, M., Bragagnoli, A.C., Coskun, H.S., et al. (2021) Phase III Trial of Avelumab Maintenance after First-Line Induction Chemotherapy versus Continuation of Chemotherapy in Patients with Gastric Cancers: Results from JAVELIN Gastric 100. Journal of Clinical Oncology, 39, 966-977. https://doi.org/10.1200/JCO.20.00892 |
[13] | Moehler, M.H., Kato, K., Arkenau, H.-T., Oh, D.-Y., Tabernero, J., Cruz-Correa, M., Wang, H., Xu, H., Li, J., Yang, S., et al. (2023) Rationale 305, Phase 3 Study of Tislelizumab Plus Chemotherapy vs Placebo Plus Chemotherapy as First-Line Treatment (1L) of Advanced Gastric or Gastroesophageal Junction Adenocarcinoma (GC/GEJC). Journal of Clinical Oncology, 41, 286. https://doi.org/10.1200/JCO.2023.41.4_suppl.286 |
[14] | Zayac, A. and Almhanna, K. (2020) Esophageal, Gastric Cancer and Immunotherapy: Small Steps in the Right Direction? Translational Gastroenterology and Hepatology, 5, Article 9. https://doi.org/10.21037/tgh.2019.09.05 |
[15] | Moslehi, J.J., et al. (2018) Increased Reporting of Fatal Immune Checkpoint Inhibitor-Associated Myocarditis. The Lancet, 391, 933. https://doi.org/10.1016/S0140-6736(18)30533-6 |
[16] | Mahmood, S.S., et al. (2018) Myocarditis in Patients Treated with Immune Checkpoint Inhibitors. Journal of the American College of Cardiology, 71, 1755-1764. https://doi.org/10.1016/j.jacc.2018.02.037 |
[17] | Cortazar, F.B., et al. (2020) Clinical Features and Outcomes of Immune Checkpoint Inhibitor-Associated AKI: A Multicenter Study. Journal of the American Society of Nephrology, 31, 435-446. https://doi.org/10.1681/ASN.2019070676 |
[18] | Davis, E.J., et al. (2019) Hematologic Complications of Immune Checkpoint Inhibitors. Oncologist, 24, 584-588. https://doi.org/10.1634/theoncologist.2018-0574 |
[19] | Sato, H., Okonogi, N. and Nakano, T. (2020) Rationale of Combination of Anti-PD-1/PD-L1 Antibody Therapy and Radiotherapy for Cancer Treatment. International Journal of Clinical Oncology, 25, 801-809. https://doi.org/10.1007/s10147-020-01666-1 |
[20] | Togashi, Y., Shitara, K. and Nishikawa, H. (2019) Regulatory T Cells in Cancer Immunosuppression—Implications for Anticancer Therapy. Nature Reviews Clinical Oncology, 16, 356-371. https://doi.org/10.1038/s41571-019-0175-7 |
[21] | Rocha, S., Basto, A.P., Ijsselsteijn, M.E., Teles, S.P., Azevedo, M.M., Gon?alves, G., et al. (2021) Immunophenotype of Gastric Tumors Unveils a Pleiotropic Role of Regulatory T Cells in Tumor Development. Cancers, 13, Article 421. https://doi.org/10.3390/cancers13030421 |
[22] | B?bnowska, D., Grywalska, E., Nied?wiedzka-Rystwej, P., Sosnowska-Pasiarska, B., Smok-Kalwat, J., Pasiarski, M., Gó?d?, S., Roliński, J. and Polkowski, W. (2020) CAR-T Cell Therapy—An Overview of Targets in Gastric Cancer. Journal of Clinical Medicine, 9, Article 1894. https://doi.org/10.3390/jcm9061894 |
[23] | Caruso, H.G., Heimberger, A.B. and Cooper, L.J.N. (2019) Steering CAR T Cells to Distinguish Friend from Foe. Oncoimmunology, 8, e1271857. https://doi.org/10.1080/2162402X.2016.1271857 |
[24] | Sun, F., Yu, X., Ju, R., Wang, Z. and Wang, Y. (2022) Antitumor Responses in Gastric Cancer by Targeting B7H3 via Chimeric Antigen Receptor T Cells. Cancer Cell International, 22, Article No. 50. https://doi.org/10.1186/s12935-022-02471-8 |
[25] | Li, H., Huang, H., Zhang, T., Feng, H., Wang, S., Zhang, Y., Ji, X., Cheng, X. and Zhao, R. (2022) Apatinib: A Novel Antiangiogenic Drug in Monotherapy or Combination Immunotherapy for Digestive System Malignancies. Frontiers in Immunology, 13, Article 937307. https://doi.org/10.3389/fimmu.2022.937307 |
[26] | Zeng, Z., Yang, B. and Liao, Z. (2021) Progress and Prospects of Immune Checkpoint Inhibitors in Advanced Gastric Cancer. Future Oncology, 17, 1553-1569. https://doi.org/10.2217/fon-2020-0829 |
[27] | Wang, M., Huang, Y., Kong, J.C., Sun, Y., Tantalo, D.G., Yeang, H.X.A., Ying, L., Yan, F., Xu, D., Halse, H., et al. (2020) High-Dimensional Analyses Reveal a Distinct Role of T-Cell Subsets in the Immune Microenvironment of Gastric Cancer. Clinical & Translational Immunology, 9, e1127. https://doi.org/10.1002/cti2.1127 |
[28] | Derks, S., de Klerk, L.K., Xu, X., Fleitas, T., Liu, K.X., Liu, Y., Dietlein, F., Margolis, C., Chiaravalli, A.M., Da Silva, A.C., et al. (2020) Characterizing Diversity in the Tumor-Immune Microenvironment of Distinct Subclasses of Gastroesophageal Adenocarcinomas. Annals of Oncology, 31, 1011-1020. https://doi.org/10.1016/j.annonc.2020.04.011 |
[29] | Cancer Genome Atlas Research Network (2014) Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nature, 513, 202-209. https://doi.org/10.1038/nature13480 |
[30] | Depotte, L., Palle, J., Rasola, C., Broudin, C., Afr?sanie, V.A., Mariani, A. and Zaanan, A. (2023) New Developments and Standard of Care in the Management of Advanced Gastric Cancer. Clinics and Research in Hepatology and Gastroenterology, 48, Article 102245. https://doi.org/10.1016/j.clinre.2023.102245 |
[31] | H?gner, A. and Moehler, M. (2022) Immunotherapy in Gastric Cancer. Current Oncology, 29, 1559-1574. https://doi.org/10.3390/curroncol29030131 |