|
复杂载荷环境变厚度功能梯度组合梁镍钛合金钢丝绳非线性减振分析
|
Abstract:
本文对弹性边界和热环境下带有镍钛合金钢丝绳(NiTi-ST)的变厚度功能梯度材料组合梁(FGMs)的力学性能和非线性振动控制进行了研究。根据Euler-Bernoulli假设,建立了带有镍钛合金钢丝绳的变厚度功能梯度材料组合梁的能量表达式。基于瑞利–里茨法,求解了弹性边界和热环境下的变厚度功能梯度材料组合梁的固有频率和模态函数。通过有限元法(FEM)和理论结果的比较,验证了理论方法的正确性和收敛性,讨论了梁的厚度参数和环境的温度对系统固有特性的影响。此外,利用拉格朗日方程,推导了系统的动力学方程。应用谐波平衡法求得系统的幅频响应曲线,研究了镍钛合金钢丝绳的非线性减振性能。
In this paper, the mechanical properties and nonlinear vibration control of variable thickness FGMs combined beams with NiTi-ST under elastic boundary and thermal environment are investigated. According to the Euler-Bernoulli hypothesis, the energy expression of the variable thickness FGMs combined beam with NiTi-ST is established. Based on the Rayleigh-Ritz method, the modal function and natural frequency of the variable thickness FGMs combined beams under elastic boundary and thermal environment is solved. The correctness and convergence of the theoretical method are verified by the comparison of FEM and theoretical results, and discussed the influence of thickness parameters and temperature on the natural characteristics of the system. Furthermore, utilizing the Lagrange equation, the dynamics differential equation of the system is obtained. The amplitude-frequency curve of system is solved by the harmonic balance method, and investigated the nonlinear damping performance of the NiTi-ST.
[1] | 杨凤田, 范振伟, 项松, 等. 中国电动飞机技术创新与实践[J]. 航空学报, 2021, 42(3):7-12. |
[2] | 漆卫微. EAD200飞机的总体方案设计与性能分析[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2015. |
[3] | Wells, D. (2011) NASA Green Flight Challenge: Conceptual Design Approaches and Technologies to Enable 200 Passenger Miles per Gallon. 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, Virginia Beach, VA, 20-22 September 2011. https://doi.org/10.2514/6.2011-7021 |
[4] | 魏进. 复杂柔性结构全局模态方法及其在空间组合结构中的应用[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2018. |
[5] | 张坤. 移动车辆荷载作用下钢——混组合梁桥动力性能研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2020. |
[6] | 牛国华, 王刚锋, 王剑. 组合L型变截面梁的自由振动特性分析[J]. 振动与冲击, 2022, 41(5): 228-234. |
[7] | Zhang, X., Xu, H., Chen, X., Zhu, F., Guo, Y. and Tian, H. (2022) Vibration Characteristics and Experimental Research of Combined Beam Tri-Stable Piezoelectric Energy Harvester. Micromachines, 13, Article No. 1465. https://doi.org/10.3390/mi13091465 |
[8] | Cao, Y., Yang, J. and Yang, D. (2023) Coupling Nonlinearities Investigation and Dynamic Modeling of a Tristable Combined Beam Rotational Energy Harvesting System. Mechanical Systems and Signal Processing, 200, Article 110503. https://doi.org/10.1016/j.ymssp.2023.110503 |
[9] | Carboni, B., Lacarbonara, W., Brewick, P.T. and Masri, S.F. (2018) Dynamical Response Identification of a Class of Nonlinear Hysteretic Systems. Journal of Intelligent Material Systems and Structures, 29, 2795-2810. https://doi.org/10.1177/1045389x18778792 |
[10] | Brewick, P.T., Masri, S.F., Carboni, B. and Lacarbonara, W. (2016) Data-based Nonlinear Identification and Constitutive Modeling of Hysteresis in Nitinol and Steel Strands. Journal of Engineering Mechanics, 142. https://doi.org/10.1061/(asce)em.1943-7889.0001170 |
[11] | Zang, J., Wang, Y. and Zhang, Y-W. (2023) Analysis of Nonlinear Vibration Control for a Functionally Graded Material Plate by NiTiNOL-Steel Wire Ropes. Nonlinear Dynamics, 44, 877-896. |
[12] | Zheng, L., Zhang, Y., Ding, H. and Chen, L. (2021) Nonlinear Vibration Suppression of Composite Laminated Beam Embedded with Nitinol-Steel Wire Ropes. Nonlinear Dynamics, 103, 2391-2407. https://doi.org/10.1007/s11071-021-06258-w |
[13] | 张博文, 臧建. 湿热环境下铺设镍钛合金钢丝绳功能梯度梁的振动控制[J]. 动力学与控制学报, 2023, 21(11): 19-26. |
[14] | Wang, C., Song, X., Zang, J. and Zhang, Y. (2023) Experimental and Theoretical Investigation on Vibration of Laminated Composite Conical-Cylindrical-Combining Shells with Elastic Foundation in Hygrothermal Environment. Composite Structures, 323, Article 117470. https://doi.org/10.1016/j.compstruct.2023.117470 |
[15] | Trinh, L.C., Vo, T.P., Thai, H. and Nguyen, T. (2016) An Analytical Method for the Vibration and Buckling of Functionally Graded Beams under Mechanical and Thermal Loads. Composites Part B: Engineering, 100, 152-163. https://doi.org/10.1016/j.compositesb.2016.06.067 |