全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

呼吸道合胞病毒感染对慢性阻塞性肺疾病作用的研究现状
Research Status on the Role of Respiratory Syncytial Virus Infection in Chronic Obstructive Pulmonary Disease

DOI: 10.12677/acm.2024.1461900, PP. 1218-1224

Keywords: 呼吸道合胞病毒,慢性阻塞性肺疾病,研究进展
Respiratory Syncytial Virus
, Chronic Obstructive Pulmonary Disease, Research Status

Full-Text   Cite this paper   Add to My Lib

Abstract:

慢性阻塞性肺疾病(Chronic Obstructive Pulmonary Disease, COPD)合并病毒感染越来越受到关注,呼吸道合胞病毒(Respiratory Syncytial Virus, RSV)是COPD急性发作中最常见的病毒。在RSV感染的COPD患者中,RSV通过多种TOLL样受体、细胞质视黄酸诱导基因-1样受体和核苷酸结合寡聚化结构域样受体三种模式识别受体参与COPD患者的先天性免疫,获得性免疫损伤反应引起Th1/Th2比例失调,产生细胞因子失衡。RSV的免疫逃逸增强了COPD患者的炎症反应,引起细胞凋亡及组织破坏。支持治疗仍是治疗RSV的主要手段,开发中的RSV疫苗集中在减毒活疫苗、载体疫苗、亚单位疫苗颗粒疫苗和mRNA疫苗。本文对RSV对COPD作用的发病机制、先天免疫、获得性免疫、免疫逃逸、治疗方案和疫苗研究进展等方面进行综述,旨在提高RSV对COPD发病影响的认识。
Chronic obstructive pulmonary disease co-infections with viruses are of increasing concern, and respiratory syncytial virus is the most common virus in acute exacerbations of COPD. In RSV-infected COPD patients, RSV participates in the innate immunity of COPD patients through three modes of receptor recognition: Toll-like receptors, RIG-I like receptors and nucleotide-binding leucine-rich repeat receptors, acquired immune injury response causes a dysregulation of the Th1/Th2 ratio and generates cytokine imbalance. Immune escape of RSV enhances the inflammatory response in COPD patients, causing apoptosis and tissue destruction. Supportive therapy is still the mainstay of treatment for RSV infection, and RSV vaccines in development focus on live attenuated vaccines, vector vaccines, subunit vaccine particulate vaccines, and mRNA vaccines. This article provides a review of the pathogenesis, innate immunity, acquired immunity, immune escape, therapeutic options, and progress in vaccine research with the aim of improving the understanding of the impact of RSV on the pathogenesis of COPD.

References

[1]  Rodriguez-Fernandez, R., Mejias, A. and Ramilo, O. (2021) Monoclonal Antibodies for Prevention of Respiratory Syncytial Virus Infection. Pediatric Infectious Disease Journal, 40, S35-S39.
https://doi.org/10.1097/inf.0000000000003121
[2]  Ouyang, Y., Liao, H., Hu, Y., Luo, K., Hu, S. and Zhu, H. (2022) Innate Immune Evasion by Human Respiratory Syncytial Virus. Frontiers in Microbiology, 13, Article 865592.
https://doi.org/10.3389/fmicb.2022.865592
[3]  Kopera, E., Czajka, H., Zapolnik, P. and Mazur, A. (2023) New Insights on Respiratory Syncytial Virus Prevention. Vaccines, 11, Article 1797.
https://doi.org/10.3390/vaccines11121797
[4]  Dransfield, M.T., Kunisaki, K.M., Strand, M.J., Anzueto, A., Bhatt, S.P., Bowler, R.P., et al. (2017) Acute Exacerbations and Lung Function Loss in Smokers with and without Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 195, 324-330.
https://doi.org/10.1164/rccm.201605-1014oc
[5]  Liu, D., Tang, Z., Bajinka, O., Dai, P., Wu, G., Qin, L., et al. (2023) miR-34b/c-5p/CXCL10 Axis Induced by RSV Infection Mediates a Mechanism of Airway Hyperresponsive Diseases. Biology, 12, Article 317.
https://doi.org/10.3390/biology12020317
[6]  Wilkinson, T.M.A., Donaldson, G.C., Johnston, S.L., Openshaw, P.J.M. and Wedzicha, J.A. (2006) Respiratory Syncytial Virus, Airway Inflammation, and Fev1 Decline in Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 173, 871-876.
https://doi.org/10.1164/rccm.200509-1489oc
[7]  Sikkel, M.B., Quint, J.K., Mallia, P., Wedzicha, J.A. and Johnston, S.L. (2008) Respiratory Syncytial Virus Persistence in Chronic Obstructive Pulmonary Disease. Pediatric Infectious Disease Journal, 27, S63-S70.
https://doi.org/10.1097/inf.0b013e3181684d67
[8]  Carty, M., Guy, C. and Bowie, A.G. (2021) Detection of Viral Infections by Innate Immunity. Biochemical Pharmacology, 183, Article ID: 114316.
https://doi.org/10.1016/j.bcp.2020.114316
[9]  Sedeyn, K., Schepens, B. and Saelens, X. (2019) Respiratory Syncytial Virus Nonstructural Proteins 1 and 2: Exceptional Disrupters of Innate Immune Responses. PLOS Pathogens, 15, e1007984.
https://doi.org/10.1371/journal.ppat.1007984
[10]  Fitzgerald, K.A. and Kagan, J.C. (2020) Toll-like Receptors and the Control of Immunity. Cell, 180, 1044-1066.
https://doi.org/10.1016/j.cell.2020.02.041
[11]  Gao, W., Li, L., Wang, Y., Zhang, S., Adcock, I.M., Barnes, P.J., et al. (2015) Bronchial Epithelial Cells: The Key Effector Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease? Respirology, 20, 722-729.
https://doi.org/10.1111/resp.12542
[12]  Chen, Y., Lin, J., Zhao, Y., Ma, X. and Yi, H. (2021) Toll-like Receptor 3 (TLR3) Regulation Mechanisms and Roles in Antiviral Innate Immune Responses. Journal of Zhejiang University-SCIENCE B, 22, 609-632.
https://doi.org/10.1631/jzus.b2000808
[13]  Liu, D., Chen, Q., Zhu, H., Gong, L., Huang, Y., Li, S., et al. (2017) Association of Respiratory Syncytial Virus Toll-Like Receptor 3-Mediated Immune Response with COPD Exacerbation Frequency. Inflammation, 41, 654-666.
https://doi.org/10.1007/s10753-017-0720-4
[14]  Alshaghdali, K., Saeed, M., Kamal, M.A. and Saeed, A. (2021) Interaction of Ectodomain of Respiratory Syncytial Virus G Protein with TLR2/TLR6 Heterodimer: An in Vitro and in Silico Approach to Decipher the Role of RSV G Protein in Pro-Inflammatory Response against the Virus. Current Pharmaceutical Design, 27, 4464-4476.
https://doi.org/10.2174/1381612827666210716160030
[15]  Lukacs, N.W., Smit, J.J., Mukherjee, S., Morris, S.B., Nunez, G. and Lindell, D.M. (2010) Respiratory Virus-Induced TLR7 Activation Controls Il-17–associated Increased Mucus via IL-23 Regulation. The Journal of Immunology, 185, 2231-2239.
https://doi.org/10.4049/jimmunol.1000733
[16]  Miles, M.A., Liong, S., Liong, F., Coward-Smith, M., Trollope, G.S., Oseghale, O., et al. (2023) TLR7 Promotes Chronic Airway Disease in RSV-Infected Mice. Frontiers in Immunology, 14, Article 1240552.
https://doi.org/10.3389/fimmu.2023.1240552
[17]  Seth, R.B., Sun, L., Ea, C. and Chen, Z.J. (2005) Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein That Activates NF-κB and IRF 3. Cell, 122, 669-682.
https://doi.org/10.1016/j.cell.2005.08.012
[18]  Rehwinkel, J. and Gack, M.U. (2020) RIG-I-like Receptors: Their Regulation and Roles in RNA Sensing. Nature Reviews Immunology, 20, 537-551.
https://doi.org/10.1038/s41577-020-0288-3
[19]  Pei, J., Wagner, N.D., Zou, A.J., Chatterjee, S., Borek, D., Cole, A.R., et al. (2021) Structural Basis for IFN Antagonism by Human Respiratory Syncytial Virus Nonstructural Protein 2. Proceedings of the National Academy of Sciences of the United States of America, 118, e2020587118.
https://doi.org/10.1073/pnas.2020587118
[20]  Schwab, L.S.U., Farrukee, R., Eléou?t, J., Rameix-Welti, M., Londrigan, S.L., Brooks, A.G., et al. (2022) Retinoic Acid-Inducible Gene I Activation Inhibits Human Respiratory Syncytial Virus Replication in Mammalian Cells and in Mouse and Ferret Models of Infection. The Journal of Infectious Diseases, 226, 2079-2088.
https://doi.org/10.1093/infdis/jiac295
[21]  Demoor, T., Petersen, B.C., Morris, S., Mukherjee, S., Ptaschinski, C., De Almeida Nagata, D.E., et al. (2012) IPS-1 Signaling Has a Nonredundant Role in Mediating Antiviral Responses and the Clearance of Respiratory Syncytial Virus. The Journal of Immunology, 189, 5942-5953.
https://doi.org/10.4049/jimmunol.1201763
[22]  Sabbah, A., Chang, T.H., Harnack, R., Frohlich, V., Tominaga, K., Dube, P.H., et al. (2010) Erratum: Corrigendum: Activation of Innate Immune Antiviral Responses by Nod2. Nature Immunology, 11, 969-969.
https://doi.org/10.1038/ni1010-969b
[23]  Segovia, J., Sabbah, A., Mgbemena, V., Tsai, S., Chang, T., Berton, M.T., et al. (2012) TLR2/MyD88/NF-κB Pathway, Reactive Oxygen Species, Potassium Efflux Activates NLRP3/ASC Inflammasome during Respiratory Syncytial Virus Infection. PLOS ONE, 7, e29695.
https://doi.org/10.1371/journal.pone.0029695
[24]  Sun, Y. and López, C.B. (2017) The Innate Immune Response to RSV: Advances in Our Understanding of Critical Viral and Host Factors. Vaccine, 35, 481-488.
https://doi.org/10.1016/j.vaccine.2016.09.030
[25]  Varricchi, G., Harker, J., Borriello, F., Marone, G., Durham, S.R. and Shamji, M.H. (2016) T Follicular Helper (tfh) Cells in Normal Immune Responses and in Allergic Disorders. Allergy, 71, 1086-1094.
https://doi.org/10.1111/all.12878
[26]  Blanken, M.O., Rovers, M.M., Molenaar, J.M., Winkler-Seinstra, P.L., Meijer, A., Kimpen, J.L.L., et al. (2013) Respiratory Syncytial Virus and Recurrent Wheeze in Healthy Preterm Infants. New England Journal of Medicine, 368, 1791-1799.
https://doi.org/10.1056/nejmoa1211917
[27]  Spann, K.M., Tran, K., Chi, B., Rabin, R.L. and Collins, P.L. (2004) Suppression of the Induction of Alpha, Beta, and Gamma Interferons by the NS1 and NS2 Proteins of Human Respiratory Syncytial Virus in Human Epithelial Cells and Macrophages. Journal of Virology, 78, 4363-4369.
https://doi.org/10.1128/jvi.78.8.4363-4369.2004
[28]  Thornhill, E.M. and Verhoeven, D. (2020) Respiratory Syncytial Virus’s Non-Structural Proteins: Masters of Interference. Frontiers in Cellular and Infection Microbiology, 10, Article 225.
https://doi.org/10.3389/fcimb.2020.00225
[29]  祖向阳, 高伟娜, 杜喆, 等. 呼吸道合胞病毒疫苗的研究进展[J]. 中国疫苗和免疫, 2018, 24(2): 237-242.
[30]  Cunningham, C.K., Karron, R.A., Muresan, P., Kelly, M.S., McFarland, E.J., Perlowski, C., et al. (2022) Evaluation of Recombinant Live-Attenuated Respiratory Syncytial Virus (RSV) Vaccines RSV/δNS2/δ1313/I1314L and RSV/276 in RSV-Seronegative Children. The Journal of Infectious Diseases, 226, 2069-2078.
https://doi.org/10.1093/infdis/jiac253
[31]  Stuart, A.S.V., Virta, M., Williams, K., Seppa, I., Hartvickson, R., Greenland, M., et al. (2022) Phase 1/2a Safety and Immunogenicity of an Adenovirus 26 Vector Respiratory Syncytial Virus (RSV) Vaccine Encoding Prefusion F in Adults 18-50 Years and RSV-Seropositive Children 12-24 Months. The Journal of Infectious Diseases, 227, 71-82.
https://doi.org/10.1093/infdis/jiac407
[32]  Regev-Yochay, G., Gonen, T., Gilboa, M., Mandelboim, M., Indenbaum, V., Amit, S., et al. (2022) Efficacy of a Fourth Dose of Covid-19 mRNA Vaccine against Omicron. New England Journal of Medicine, 386, 1377-1380.
https://doi.org/10.1056/nejmc2202542
[33]  Walsh, E.E., Pérez Marc, G., Zareba, A.M., Falsey, A.R., Jiang, Q., Patton, M., et al. (2023) Efficacy and Safety of a Bivalent RSV Prefusion F Vaccine in Older Adults. New England Journal of Medicine, 388, 1465-1477.
https://doi.org/10.1056/nejmoa2213836

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133