In this study, we analyse the climate variability in the Upper Benue basin and assess its potential impact on the hydrology regime under two different greenhouse gas emission scenarios. The hydrological regime of the basin is more vulnerable to climate variability, especially precipitation and temperature. Observed hydroclimatic data (1950-2015) was analysed using a statistical approach. The potential impact of future climate change on the hydrological regime is quantified using the GR2M model and two climate models: HadGEM2-ES and MIROC5 from CMIP5 under RCP 4.5 and RCP 8.5 greenhouse gas emission scenarios. The main result shows that precipitation varies significantly according to the geographical location and time in the Upper Benue basin. The trend analysis of climatic parameters shows a decrease in annual average precipitation across the study area at a rate of -0.568 mm/year which represents about 37 mm/year over the time 1950-2015 compared to the 1961-1990 reference period. An increase of 0.7°C in mean temperature and 14% of PET are also observed according to the same reference period. The two climate models predict a warming of the basin of about 2°C for both RCP 4.5 and 8.5 scenarios and an increase in precipitation between 1% and 10% between 2015 and 2100. Similarly, the average annual flow is projected to increase by about +2% to +10% in the future for both RCP 4.5 and 8.5 scenarios between 2015 and 2100. Therefore, it is primordial to develop adaptation and mitigation measures to manage efficiently the availability of water resources.
References
[1]
IPCC (2013) The Physical Science Basis. In: Stocker, T.F., Qin, D.H., Plattner, G.K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M., Eds., Part of the Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 1-222.
[2]
Bora, G.C., Bali, S. and Mistry, P. (2014) Impact of Climate Variability on Yield of Spring Wheat in North Dakota. American Journal of Climate Change, 3, 366-377. https://doi.org/10.4236/ajcc.2014.34032
[3]
Brunetti, M., Buffoni, L., Maugeri, M. and Nanni, T. (2000) Precipitation Intensity Trends in Northern Italy. International Journal of Climatology, 20, 1017-1031. https://doi.org/10.1002/1097-0088(200007)20:9<1017::aidjoc515>3.0.co;2-s
[4]
Boubacar, I. (2008) Caractérisation des saisons de pluies au Burkina Faso dans un contexte de changement climatique et évaluation des impacts hydrologiques sur le bassin du Nakanbé. Ph.D. Thesis, University of Pierre and Marie Curie—Paris VI.
[5]
Mbaye, M.L., Hagemann, S., Haensler, A., Stacke, T., Gaye, A.T. and Afouda, A. (2015) Assessment of Climate Change Impact on Water Resources in the Upper Senegal Basin (West Africa). American Journal of Climate Change, 4, 77-93. https://doi.org/10.4236/ajcc.2015.41008
[6]
Mahé, G., Lienou, G., Bamba, F., Paturel, J.E., Adeaga, O., Descroix, L., Mariko, A., Olivry, J.C., Sangare, S., Ogilvie, A. and Clanet, J.C. (2011) Le fleuve Niger et le changement climatique au cours des 100 dernières années. Hydro-Climatology: Variability and Change, 344, 131-137.
[7]
Murumkar, A., Durand, M., Fernández, A., Moritz, M., Mark, B., Phang, S.C., Laborde, S., Scholte, P., Shastry, A. and Hamilton, I. (2020) Trends and Spatial Patterns of 20th Century Temperature, Rainfall and PET in the Semi-Arid Logone River Basin, Sub-Saharan Africa. Journal of Arid Environments, 178, Article 104168. https://doi.org/10.1016/j.jaridenv.2020.104168
[8]
Ardoin-Bardin, S. (2004) Variabilité hydroclimatique et impacts sur les ressources en eau de grands bassins hydrographiques en zone Soudano-sahélienne. Ph.D. Thesis, University of Montpellier II.
[9]
Toro, S.M. (1997) Post‐Construction Effects of the Cameroonian Lagdo Dam on the River Benue. Water and Environment Journal, 11, 109-113. https://doi.org/10.1111/j.1747-6593.1997.tb00100.x
[10]
Graham, L.P., Andréasson, J. and Carlsson, B. (2007) Assessing Climate Change Impacts on Hydrology from an Ensemble of Regional Climate Models, Model Scales and Linking Methods—A Case Study on the Lule River Basin. Climatic Change, 81, 293-307. https://doi.org/10.1007/s10584-006-9215-2
[11]
Sieck, K. and Jacob, D. (2016) Influence of the Boundary Forcing on the Internal Variability of a Regional Climate Model. American Journal of Climate Change, 5, 373-382. https://doi.org/10.4236/ajcc.2016.53028
[12]
Teutschbein, C. and Seibert, J. (2012) Bias Correction of Regional Climate Model Simulations for Hydrological Climate-Change Impact Studies: Review and Evaluation of Different Methods. Journal of Hydrology, 456, 12-29. https://doi.org/10.1016/j.jhydrol.2012.05.052
[13]
Mkankam Kamga, F. (2001) Impact of Greenhouse Gas Induced Climate Change on the Runoff of the Upper Benue River (Cameroon). Journal of Hydrology, 252, 145-156. https://doi.org/10.1016/s0022-1694(01)00445-0
[14]
MINEPDED (2015) Plan National d’adaptation aux changements climatiques pour le Cameroun (PNACC)-Cameroun, Draft, Yaoundé.
[15]
Sighomnou, D. (2004) Analyse et redéfinition des régimes climatiques ethydrologiques du Cameroun: Perspectives d’évolution des ressources en eau. Ph.D. Thesis, University of Yaoundé I.
[16]
Niel, H., Leduc, C. and Dieulin, C. (2005) Spatial and Temporal Variability of Annual Rainfall in the Lake Chad Basin during the 20th Century. Hydrological Sciences Journal, 50, 243.
[17]
Dassou, E.F., Ombolo, A., Chouto, S., Mboudou, G.E., Essi, J.M.A. and Bineli, E. (2016) Trends and Geostatistical Interpolation of Spatio-Temporal Variability of Precipitation in Northern Cameroon. American Journal of Climate Change, 5, 229-244. https://doi.org/10.4236/ajcc.2016.52020
[18]
Olivry, J.C. (1986) Fleuves et rivières du Cameroun. Collection Monographies Hydrologiques. MESRES-ORSTOM Edition. Ministère de l’enseignement supérieur et de la recherche scientifique au Cameroun.
[19]
Chou, S.C., Lyra, A., Mourão, C., Dereczynski, C., Pilotto, I., Gomes, J., et al. (2014) Evaluation of the Eta Simulations Nested in Three Global Climate Models. American Journal of Climate Change, 3, 438-454. https://doi.org/10.4236/ajcc.2014.35039
[20]
Adeyeri, O.E., Lawin, A.E., Laux, P., Ishola, K.A. and Ige, S.O. (2019) Analysis of Climate Extreme Indices over the Komadugu-Yobe Basin, Lake Chad Region: Past and Future Occurrences. Weather and Climate Extremes, 23, Article ID: 100194. https://doi.org/10.1016/j.wace.2019.100194
[21]
Hasson, S., Pascale, S., Lucarini, V. and Böhner, J. (2016) Seasonal Cycle of Precipitation over Major River Basins in South and Southeast Asia: A Review of the CMIP5 Climate Models Data for Present Climate and Future Climate Projections. Atmospheric Research, 180, 42-63. https://doi.org/10.1016/j.atmosres.2016.05.008
[22]
Mouelhi, S., Michel, C., Perrin, C. and Andréassian, V. (2006) Stepwise Development of a Two-Parameter Monthly Water Balance Model. Journal of Hydrology, 318, 200-214. https://doi.org/10.1016/j.jhydrol.2005.06.014
[23]
Fita, D.E. (2019) Impact de la variabilité climatique sur la réponse hydrologique du bassin versant supérieur de la Bénoué (Nord Cameroun). Ph.D. Thesis, University of Maroua.
[24]
Hargreaves, G.H. and Samani, Z.A. (1985) Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1, 96-99. https://doi.org/10.13031/2013.26773
[25]
IPCC (2014) Climate Change: Impacts, Adaptation, and Vulnerability, Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
[26]
Kpoumié, A., Ndam Ngoupayou, J.R., Rusu, E., Sfïcă, L., Ichim, P. and Ekodeck, E.G. (2012) Spatiotemporal Evolution of Rainfall Regimes in the Sanaga basin-Cameroon in a Deficit Context. Present Environment and Sustainable Development, 6, 55-68.
[27]
Amoussou, E. (2010) Variabilité pluviométrique et dynamique hydrosédimentaire du bassin versant du complexe fluvio-lagunaire Mono-Ahémé-Couffo (Afrique de l’Ouest). Ph.D. Thesis, University of Bourgogne.
[28]
Bauwens, A., Sohier, C. and Degré, A. (2013) Impacts du changement climatique sur l’hydrologie et la gestion des ressources en eau du bassin de la Meuse (synthèse bib-liographique). Biotechnology, Agronomy, Society and Environment, 17, 76-86.
[29]
Lespinas, F., Ludwig, W. and Heussner, S. (2014) Hydrological and Climatic Uncertainties Associated with Modeling the Impact of Climate Change on Water Resources of Small Mediterranean Coastal Rivers. Journal of Hydrology, 511, 403-422. https://doi.org/10.1016/j.jhydrol.2014.01.033
[30]
Marchane, A., Tramblay, Y., Hanich, L., Ruelland, D. and Jarlan, L. (2017) Climate Change Impacts on Surface Water Resources in the Rheraya Catchment (High Atlas, Morocco). Hydrological Sciences Journal, 62, 979-995. https://doi.org/10.1080/02626667.2017.1283042
[31]
Nonki, R.M., Lenouo, A., Lennard, C.J. and Tchawoua, C. (2019) Assessing Climate Change Impacts on Water Resources in the Benue River Basin, Northern Cameroon. Environmental Earth Sciences, 78, Article No. 606. https://doi.org/10.1007/s12665-019-8614-4
[32]
Arnell, N.W. (2006) Climate Change and Water Resources. In: Schellnhuber, H.J., Ed., Avoiding Dangerous Climate Change, Cambridge University Press, 167-176.
[33]
Hasson, S., Pascale, S., Lucarini, V. and Böhner, J. (2016) Seasonal Cycle of Precipitation over Major River Basins in South and Southeast Asia: A Review of the CMIP5 Climate Models Data for Present Climate and Future Climate Projections. Atmospheric Research, 180, 42-63. https://doi.org/10.1016/j.atmosres.2016.05.008