全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

考虑股市网络因子的多因子选股策略研究
Research on Multi-Factor Stock Selection Strategy Considering Network Factors in the Stock Market

DOI: 10.12677/sa.2024.134105, PP. 1033-1046

Keywords: Fama-French三因子模型,复杂网络,因子分析,量化选股
Fama-French Three-Factor Model
, Complex Networks, Factor Analysis, Quantitative Stock Selection

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文基于中国A股市场数据,选取四个节点网络指标构建了网络因子,将其与传统的Fama-French三因子模型相结合,提出了新的四因子选股模型。实证研究表明,该模型比三因子模型更能解释收益率的变动。基于四因子模型进行的选股策略的回测结果显示,网络因子构建的投资组合在收益率、风险和最大回撤率等方面均优于上证A股指数。
This paper, based on data from China’s A-share market, constructs a network factor using four network indicators and combines it with the traditional Fama-French three-factor model to propose a new four-factor stock selection model. Empirical research shows that this model can better explain variations in returns compared to the three-factor model. Back-testing results of the stock selection strategy based on the four-factor model indicate that the investment portfolio constructed with the network factor outperforms the Shanghai A-share index in terms of returns, risk, and maximum drawdown rate.

References

[1]  Watts, D.J. and Strogatz, S.H. (1998) Collective Dynamics of “Small-World” Networks. Nature, 393, 440-442.
https://doi.org/10.1038/30918
[2]  Barabási, A.L. and Albert, R. (1999) Emergence of Scaling in Random Networks. Science, 286, 509-512.
https://doi.org/10.1126/science.286.5439.509
[3]  吴婕, 许忠好, 翟心彤. 基于复杂网络的新冠疫情下股票市场波动模型研究[J]. 应用概率统计, 2022, 38(4): 603-616.
[4]  徐玉华, 赵玥, 高新柠, 等. 复杂网络理论下我国股市行业板块风险传染效应研究[J]. 江西科学, 2022, 40(2): 207-214.
[5]  胡宁. 网络视角下的中国股票市场系统性风险[J]. 中国外资, 2021(18): 82-84.
[6]  Markowitz, H. (1952) Portfolio Selection. The Journal of Finance, 7, 77-91.
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
[7]  Sharpe, W.F. (1964) Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. Journal of Finance, 19, 425-442.
https://doi.org/10.1111/j.1540-6261.1964.tb02865.x
[8]  Ross, S.A. (1976) The Arbitrage Theory of Capital Asset Pricing. Journal of Economic Theory, 13, 341-360.
https://doi.org/10.1016/0022-0531(76)90046-6
[9]  Fama, E.F. and French, K.R. (1992) The Cross-Section of Expected Stock Returns. Journal of Finance, 47, 427-465.
https://doi.org/10.1111/j.1540-6261.1992.tb04398.x
[10]  Fama, E.F. and French, K.R. (2015) A Five-Factor Asset Pricing Model. Journal of Financial Economics, 116, 1-22.
https://doi.org/10.1016/j.jfineco.2014.10.010
[11]  李志冰, 杨光艺, 冯永昌, 景亮. Fama-French五因子模型在中国股票市场的实证检验[J]. 金融研究, 2017(6): 191-206.
[12]  赵胜民, 闫红蕾, 张凯. Fama-French五因子模型比三因子模型更胜一筹吗——来自中国A股市场的经验证据[J]. 南开经济研究, 2016(2): 41-59.
[13]  赵合. 基于三因子模型下投资者情绪对我国A股收益率的影响研究[D]: [硕士学位论文]. 昆明: 云南师范大学, 2023.
[14]  潘昳锦. ESG因子在我国A股市场上的有效性研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2024.
[15]  Liu, J., Stambaugh, F.R. and Yuan, Y. (2019) Size and Value in China. Journal of Financial Economics, 134, 48-69.
https://doi.org/10.1016/j.jfineco.2019.03.008
[16]  吴翎燕, 韩华, 宋宁宁. 基于相关系数和最佳阈值的股票网络模型构建[J]. 复杂系统与复杂性科学, 2013, 10(4): 49-55+85.
[17]  Gibbons, M.R., Ross, S.A. and Shanken, J. (1989) A Test of the Efficiency of a Given Portfolio. Econometrica, 57, 1121-1152.
https://doi.org/10.2307/1913625
[18]  王超. 基于复杂网络度值的多因子模型选股策略研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2018.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133