|
GLP-1RA及SGLT-2i对糖尿病患者的血尿酸的影响如何?
|
Abstract:
GLP-1RA及SGLT-2i是ADA和中华医学会糖尿病学分会推荐的新型降糖药物,具有低血糖风险小、兼具心血管保护及降低体重等代谢获益的特点。高尿酸血症是2型糖尿病的独立危险因素,在临床实践中,人们一直在关注预防SUA的升高。据估计,患者SUA每升高1 mg/dl,发生T2DM的风险就会增加17%。国内外学者研究结果提示SGLT-2i能兼顾降糖的同时降低SUA水平;最近国外研究显示GLP-1RA还可以降低SUA水平,但仍存在矛盾。国内学者对此研究报告甚少。还需要更多的研究填补此领域的空白,为更好地预防2型糖尿的发生及发展作出贡献。
GLP-1RA and SGLT-2i are new hypoglycemic drugs recommended by ADA and Diabetes Branch of Chinese Medical Association, which have the characteristics of low risk of hypoglycemia, metabolic benefits such as cardiovascular protection and weight reduction. Hyperuricemia is an independent risk factor for type 2 diabetes, and much attention has been paid to the prevention of elevated SUA in clinical practice. It is estimated that every 1 mg/dl elevation of patient SUA causes a 17% increase in the risk of developing T2DM. The results of domestic and foreign scholars suggest that SGLT-2i can reduce SUA level while lowering glucose; recent foreign studies show that GLP-1RA can also reduce SUA level, but there are still contradictions. Domestic scholars have few reports on this. More studies are needed to fill the gap in this field to contribute to better prevention of the occurrence and development of type 2 diabetes mellitus.
[1] | Salehi, M., Aulinger, B.A. and D’Alessio, D.A. (2008) Targeting Β-Cell Mass in Type 2 Diabetes: Promise and Limitations of New Drugs Based on Incretins. Endocrine Reviews, 29, 367-379. https://doi.org/10.1210/er.2007-0031 |
[2] | 纪立农, 邹大进, 洪天配, 等. GLP-1受体激动剂临床应用专家指导意见[J]. 中国糖尿病杂志, 2018, 26(5): 353-361. |
[3] | Andersen, A., Lund, A., Knop, F.K. and Vilsbøll, T. (2018) Glucagon-Like Peptide 1 in Health and Disease. Nature Reviews Endocrinology, 14, 390-403. https://doi.org/10.1038/s41574-018-0016-2 |
[4] | Nauck, M.A., Niedereichholz, U., Ettler, R., Holst, J.J., Ørskov, C., Ritzel, R., et al. (1997) Glucagon-Like Peptide 1 Inhibition of Gastric Emptying Outweighs Its Insulinotropic Effects in Healthy Humans. American Journal of Physiology-Endocrinology and Metabolism, 273, E981-E988. https://doi.org/10.1152/ajpendo.1997.273.5.e981 |
[5] | Wiciński, M., Socha, M., Malinowski, B., Wódkiewicz, E., Walczak, M., Górski, K., et al. (2019) Liraglutide and Its Neuroprotective Properties—Focus on Possible Biochemical Mechanisms in Alzheimer’s Disease and Cerebral Ischemic Events. International Journal of Molecular Sciences, 20, Article 1050. https://doi.org/10.3390/ijms20051050 |
[6] | Liu, W., Jalewa, J., Sharma, M., Li, G., Li, L. and Hölscher, C. (2015) Neuroprotective Effects of Lixisenatide and Liraglutide in the 1-Methyl-4-Phenyl-1, 2, 3, 6-Tetrahydropyridine Mouse Model of Parkinson’s Disease. Neuroscience, 303, 42-50. https://doi.org/10.1016/j.neuroscience.2015.06.054 |
[7] | Dixit, T.S., Sharma, A.N., Lucot, J.B. and Elased, K.M. (2013) Antipsychotic-Like Effect of GLP-1 Agonist Liraglutide but Not DPP-IV Inhibitor Sitagliptin in Mouse Model for Psychosis. Physiology & Behavior, 114, 38-41. https://doi.org/10.1016/j.physbeh.2013.03.008 |
[8] | Eguchi, Y., Kitajima, Y., Hyogo, H., Takahashi, H., Kojima, M., Ono, M., et al. (2014) Pilot Study of Liraglutide Effects in Non‐Alcoholic Steatohepatitis and Non‐Alcoholic Fatty Liver Disease with Glucose Intolerance in Japanese Patients (LEAN‐J). Hepatology Research, 45, 269-278. https://doi.org/10.1111/hepr.12351 |
[9] | Hansen, J., Brock, B., Bøtker, H.E., Gjedde, A., Rungby, J. and Gejl, M. (2014) Impact of Glucagon-Like Peptide-1 on Myocardial Glucose Metabolism Revisited. Reviews in Endocrine and Metabolic Disorders, 15, 219-231. https://doi.org/10.1007/s11154-014-9286-8 |
[10] | Sassoon, D.J., Tune, J.D., Mather, K.J., Noblet, J.N., Eagleson, M.A., Conteh, A.M., et al. (2017) Glucagon-Like Peptide 1 Receptor Activation Augments Cardiac Output and Improves Cardiac Efficiency in Obese Swine after Myocardial Infarction. Diabetes, 66, 2230-2240. https://doi.org/10.2337/db16-1206 |
[11] | American Diabetes Association (2020) 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2021. Diabetes Care, 44, S111-S124. https://doi.org/10.2337/dc21-s009 |
[12] | Rieg, T. and Vallon, V. (2018) Development of SGLT1 and SGLT2 Inhibitors. Diabetologia, 61, 2079-2086. https://doi.org/10.1007/s00125-018-4654-7 |
[13] | Perry, R.J. and Shulman, G.I. (2020) Sodium-Glucose Cotransporter-2 Inhibitors: Understanding the Mechanisms for Therapeutic Promise and Persisting Risks. Journal of Biological Chemistry, 295, 14379-14390. https://doi.org/10.1074/jbc.rev120.008387 |
[14] | Scheen, A.J. (2020) Sodium-Glucose Cotransporter Type 2 Inhibitors for the Treatment of Type 2 Diabetes Mellitus. Nature Reviews Endocrinology, 16, 556-577. https://doi.org/10.1038/s41574-020-0392-2 |
[15] | Marx, N., Davies, M.J., Grant, P.J., Mathieu, C., Petrie, J.R., Cosentino, F., et al. (2021) Guideline Recommendations and the Positioning of Newer Drugs in Type 2 Diabetes Care. The Lancet Diabetes & Endocrinology, 9, 46-52. https://doi.org/10.1016/s2213-8587(20)30343-0 |
[16] | 中华医学会糖尿病分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华糖尿病杂志, 2021, 13(4): 315-409. |
[17] | Liu, X., Zhang, N., Chen, R., Zhao, J. and Yu, P. (2015) Efficacy and Safety of Sodium-Glucose Cotransporter 2 Inhibitors in Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials for 1 to 2 Years. Journal of Diabetes and its Complications, 29, 1295-1303. https://doi.org/10.1016/j.jdiacomp.2015.07.011 |
[18] | Donnan, J.R., Grandy, C.A., Chibrikov, E., Marra, C.A., Aubrey-Bassler, K., Johnston, K., et al. (2019) Comparative Safety of the Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A Systematic Review and Meta-Analysis. BMJ Open, 9, e022577. https://doi.org/10.1136/bmjopen-2018-022577 |
[19] | Seino, Y., Sasaki, T., Fukatsu, A., Sakai, S. and Samukawa, Y. (2014) Efficacy and Safety of Luseogliflozin Monotherapy in Japanese Patients with Type 2 Diabetes Mellitus: A 12-Week, Randomized, Placebo-Controlled, Phase II Study. Current Medical Research and Opinion, 30, 1219-1230. https://doi.org/10.1185/03007995.2014.901943 |
[20] | Seino, Y., Sasaki, T., Fukatsu, A., Ubukata, M., Sakai, S. and Samukawa, Y. (2014) Dose-finding Study of Luseogliflozin in Japanese Patients with Type 2 Diabetes Mellitus: A 12-Week, Randomized, Double-Blind, Placebo-Controlled, Phase II Study. Current Medical Research and Opinion, 30, 1231-1244. https://doi.org/10.1185/03007995.2014.909390 |
[21] | Seino, Y., Sasaki, T., Fukatsu, A., Ubukata, M., Sakai, S. and Samukawa, Y. (2014) Efficacy and Safety of Luseogliflozin as Monotherapy in Japanese Patients with Type 2 Diabetes Mellitus: A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Study. Current Medical Research and Opinion, 30, 1245-1255. https://doi.org/10.1185/03007995.2014.912983 |
[22] | Zelniker, T.A., Wiviott, S.D., Raz, I., Im, K., Goodrich, E.L., Bonaca, M.P., et al. (2019) SGLT2 Inhibitors for Primary and Secondary Prevention of Cardiovascular and Renal Outcomes in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cardiovascular Outcome Trials. The Lancet, 393, 31-39. https://doi.org/10.1016/s0140-6736(18)32590-x |
[23] | Ninčević, V., Omanović Kolarić, T., Roguljić, H., Kizivat, T., Smolić, M. and Bilić Ćurčić, I. (2019) Renal Benefits of SGLT 2 Inhibitors and GLP-1 Receptor Agonists: Evidence Supporting a Paradigm Shift in the Medical Management of Type 2 Diabetes. International Journal of Molecular Sciences, 20, Article 5831. https://doi.org/10.3390/ijms20235831 |
[24] | Chilton, R.J. (2019) Effects of Sodium‐Glucose Cotransporter‐2 Inhibitors on the Cardiovascular and Renal Complications of Type 2 Diabetes. Diabetes, Obesity and Metabolism, 22, 16-29. https://doi.org/10.1111/dom.13854 |
[25] | Ferrannini, E. and Solini, A. (2012) SGLT2 Inhibition in Diabetes Mellitus: Rationale and Clinical Prospects. Nature Reviews Endocrinology, 8, 495-502. https://doi.org/10.1038/nrendo.2011.243 |
[26] | Wilding, J.P.H., Norwood, P., T’joen, C., Bastien, A., List, J.F. and Fiedorek, F.T. (2009) A Study of Dapagliflozin in Patients with Type 2 Diabetes Receiving High Doses of Insulin Plus Insulin Sensitizers: Applicability of a Novel Insulin-Independent Treatment. Diabetes Care, 32, 1656-1662. https://doi.org/10.2337/dc09-0517 |
[27] | McGill, J.B. (2014) The SGLT2 Inhibitor Empagliflozin for the Treatment of Type 2 Diabetes Mellitus: A Bench to Bedside Review. Diabetes Therapy, 5, 43-63. https://doi.org/10.1007/s13300-014-0063-1 |
[28] | Li, S., Sanna, S., Maschio, A., Busonero, F., Usala, G., Mulas, A., et al. (2007) The GLUT9 Gene Is Associated with Serum Uric Acid Levels in Sardinia and Chianti Cohorts. PLOS Genetics, 3, e194. https://doi.org/10.1371/journal.pgen.0030194 |
[29] | Chino, Y., Samukawa, Y., Sakai, S., Nakai, Y., Yamaguchi, J., Nakanishi, T., et al. (2014) SGLT2 Inhibitor Lowers Serum Uric Acid through Alteration of Uric Acid Transport Activity in Renal Tubule by Increased Glycosuria. Biopharmaceutics & Drug Disposition, 35, 391-404. https://doi.org/10.1002/bdd.1909 |
[30] | Hussain, M., Elahi, A., Hussain, A., Iqbal, J., Akhtar, L. and Majid, A. (2021) Sodium-Glucose Cotransporter-2 (SGLT-2) Attenuates Serum Uric Acid (SUA) Level in Patients with Type 2 Diabetes. Journal of Diabetes Research, 2021, Article ID: 9973862. https://doi.org/10.1155/2021/9973862 |
[31] | Khosla, U.M., Zharikov, S., Finch, J.L., Nakagawa, T., Roncal, C., Mu, W., et al. (2005) Hyperuricemia Induces Endothelial Dysfunction. Kidney International, 67, 1739-1742. https://doi.org/10.1111/j.1523-1755.2005.00273.x |
[32] | Davies, M.J., Trujillo, A., Vijapurkar, U., Damaraju, C.V. and Meininger, G. (2015) Effect of Canagliflozin on Serum Uric Acid in Patients with Type 2 Diabetes Mellitus. Diabetes, Obesity and Metabolism, 17, 426-429. https://doi.org/10.1111/dom.12439 |
[33] | Najafi, S., Bahrami, M., Butler, A.E. and Sahebkar, A. (2022) The Effect of Glucagon-Like Peptide-1 Receptor Agonists on Serum Uric Acid Concentration: A Systematic Review and Meta-Analysis. British Journal of Clinical Pharmacology, 88, 3627-3637. |
[34] | King, C., Lanaspa, M.A., Jensen, T., Tolan, D.R., Sánchez-Lozada, L.G. and Johnson, R.J. (2018) Uric Acid as a Cause of the Metabolic Syndrome. In: Treviño-Becerra, A. and Iseki, K., Eds., Contributions to Nephrology, S. Karger AG, 88-102. https://doi.org/10.1159/000484283 |
[35] | Katsiki, N., Papanas, N., Fonseca, V., Maltezos, E. and Mikhailidis, D. (2013) Uric Acid and Diabetes: Is There a Link? Current Pharmaceutical Design, 19, 4930-4937. https://doi.org/10.2174/1381612811319270016 |
[36] | Bhole, V., Choi, J.W.J., Woo Kim, S., de Vera, M. and Choi, H. (2010) Serum Uric Acid Levels and the Risk of Type 2 Diabetes: A Prospective Study. The American Journal of Medicine, 123, 957-961. https://doi.org/10.1016/j.amjmed.2010.03.027 |
[37] | Kodama, S., Saito, K., Yachi, Y., Asumi, M., Sugawara, A., Totsuka, K., et al. (2009) Association between Serum Uric Acid and Development of Type 2 Diabetes. Diabetes Care, 32, 1737-1742. https://doi.org/10.2337/dc09-0288 |
[38] | Xu, Y., Xu, K., Bai, J., Liu, Y., Yu, R., Liu, C., et al. (2016) Elevation of Serum Uric Acid and Incidence of Type 2 Diabetes: A Systematic Review and Meta‐Analysis. Chronic Diseases and Translational Medicine, 2, 81-91. https://doi.org/10.1016/j.cdtm.2016.09.003 |
[39] | Lv, Q., Meng, X., He, F., Chen, S., Su, H., Xiong, J., et al. (2013) High Serum Uric Acid and Increased Risk of Type 2 Diabetes: A Systemic Review and Meta-Analysis of Prospective Cohort Studies. PLOS ONE, 8, e56864. https://doi.org/10.1371/journal.pone.0056864 |
[40] | Yan, D., Wang, J., Jiang, F., Zhang, R., Wang, T., Wang, S., et al. (2016) A Causal Relationship between Uric Acid and Diabetic Macrovascular Disease in Chinese Type 2 Diabetes Patients: A Mendelian Randomization Analysis. International Journal of Cardiology, 214, 194-199. https://doi.org/10.1016/j.ijcard.2016.03.206 |
[41] | Kushiyama, A. (2014) Linking Uric Acid Metabolism to Diabetic Complications. World Journal of Diabetes, 5, 787-795. https://doi.org/10.4239/wjd.v5.i6.787 |
[42] | Papanas, N., Demetriou, M., Katsiki, N., Papatheodorou, K., Papazoglou, D., Gioka, T., et al. (2011) Increased Serum Levels of Uric Acid Are Associated with Sudomotor Dysfunction in Subjects with Type 2 Diabetes Mellitus. Experimental Diabetes Research, 2011, Article ID: 346051. https://doi.org/10.1155/2011/346051 |
[43] | Papanas, N., Katsiki, N., Papatheodorou, K., Demetriou, M., Papazoglou, D., Gioka, T., et al. (2011) Peripheral Neuropathy Is Associated with Increased Serum Levels of Uric Acid in Type 2 Diabetes Mellitus. Angiology, 62, 291-295. https://doi.org/10.1177/0003319710394164 |
[44] | Pafili, K., Katsiki, N., Mikhailidis, D.P. and Papanas, N. (2014) Serum Uric Acid as a Predictor of Vascular Complications in Diabetes: An Additional Case for Neuropathy. Acta Diabetologica, 51, 893-894. https://doi.org/10.1007/s00592-014-0631-x |
[45] | Xiong, Q., Liu, J. and Xu, Y. (2019) Effects of Uric Acid on Diabetes Mellitus and Its Chronic Complications. International Journal of Endocrinology, 2019, Article ID: 9691345. https://doi.org/10.1155/2019/9691345 |
[46] | van der Schaft, N., Brahimaj, A., Wen, K., Franco, O.H. and Dehghan, A. (2017) The Association between Serum Uric Acid and the Incidence of Prediabetes and Type 2 Diabetes Mellitus: The Rotterdam Study. PLOS ONE, 12, e0179482. https://doi.org/10.1371/journal.pone.0179482 |
[47] | Binh, T.Q., Tran Phuong, P., Thanh Chung, N., Nhung, B.T., Tung, D.D., Quang Thuyen, T., et al. (2019) First Report on Association of Hyperuricemia with Type 2 Diabetes in a Vietnamese Population. International Journal of Endocrinology, 2019, Article ID: 5275071. https://doi.org/10.1155/2019/5275071 |
[48] | Wang, H., Zhang, H., Sun, L. and Guo, W. (2018) Roles of Hyperuricemia in Metabolic Syndrome and Cardiac-Kidney-Vascular System Diseases. American Journal of Translational Research, 10, 2749-2463. |
[49] | Ndrepepa, G. (2018) Uric Acid and Cardiovascular Disease. Clinica Chimica Acta, 484, 150-163. https://doi.org/10.1016/j.cca.2018.05.046 |
[50] | Nakagawa, T., Hu, H., Zharikov, S., Tuttle, K.R., Short, R.A., Glushakova, O., et al. (2006) A Causal Role for Uric Acid in Fructose-Induced Metabolic Syndrome. American Journal of Physiology-Renal Physiology, 290, F625-F631. https://doi.org/10.1152/ajprenal.00140.2005 |
[51] | Zhang, Z., Bian, L. and Choi, Y. (2011) Serum Uric Acid: A Marker of Metabolic Syndrome and Subclinical Atherosclerosis in Korean Men. Angiology, 63, 420-428. https://doi.org/10.1177/0003319711423806 |
[52] | Mutluay, R., Deger, S.M., Bahadir, E., Durmaz, A.O., Çitil, R. and Sindel, S. (2012) Uric Acid Is an Important Predictor for Hypertensive Early Atherosclerosis. Advances in Therapy, 29, 276-286. https://doi.org/10.1007/s12325-012-0006-z |
[53] | Fukui, M., Tanaka, M., Shiraishi, E., Harusato, I., Hosoda, H., Asano, M., et al. (2008) Serum Uric Acid Is Associated with Microalbuminuria and Subclinical Atherosclerosis in Men with Type 2 Diabetes Mellitus. Metabolism, 57, 625-629. https://doi.org/10.1016/j.metabol.2007.12.005 |
[54] | Kim, S.Y., Guevara, J.P., Kim, K.M., Choi, H.K., Heitjan, D.F. and Albert, D.A. (2010) Hyperuricemia and Coronary Heart Disease: A Systematic Review and Meta‐Analysis. Arthritis Care & Research, 62, 170-180. https://doi.org/10.1002/acr.20065 |
[55] | Krishnan, E., Pandya, B.J., Chung, L., Hariri, A. and Dabbous, O. (2012) Hyperuricemia in Young Adults and Risk of Insulin Resistance, Prediabetes, and Diabetes: A 15-Year Follow-Up Study. American Journal of Epidemiology, 176, 108-116. https://doi.org/10.1093/aje/kws002 |
[56] | Ito, H., Abe, M., Mifune, M., Oshikiri, K., Antoku, S., Takeuchi, Y., et al. (2011) Hyperuricemia Is Independently Associated with Coronary Heart Disease and Renal Dysfunction in Patients with Type 2 Diabetes Mellitus. PLOS ONE, 6, e27817. https://doi.org/10.1371/journal.pone.0027817 |
[57] | Xu, Y., Zhu, J., Gao, L., Liu, Y., Shen, J., Shen, C., et al. (2013) Hyperuricemia as an Independent Predictor of Vascular Complications and Mortality in Type 2 Diabetes Patients: A Meta-Analysis. PLOS ONE, 8, e78206. https://doi.org/10.1371/journal.pone.0078206 |
[58] | Li, H.C., Du, Z., Barone, S., Rubera, I., McDonough, A.A., Tauc, M., et al. (2013) Proximal Tubule Specific Knockout of the Na+/H+ Exchanger NHE3: Effects on Bicarbonate Absorption and Ammonium Excretion. Journal of Molecular Medicine, 91, 951-963. https://doi.org/10.1007/s00109-013-1015-3 |
[59] | Tonneijck, L., Muskiet, M.H.A., Smits, M.M., Bjornstad, P., Kramer, M.H.H., Diamant, M., et al. (2018) Effect of Immediate and Prolonged GLP‐1 Receptor Agonist Administration on Uric Acid and Kidney Clearance: Post‐hoc Analyses of Four Clinical Trials. Diabetes, Obesity and Metabolism, 20, 1235-1245. https://doi.org/10.1111/dom.13223 |
[60] | Chou, C. and Chuang, S. (2020) Evaluation of the Efficacy of Low‐dose Liraglutide in Weight Control among Taiwanese Non‐Diabetes Patients. Journal of Diabetes Investigation, 11, 1524-1531. https://doi.org/10.1111/jdi.13314 |
[61] | Acosta-Calero, C., Arnas-Leon, C., Santana-Suarez, A.D., Nivelo-Rivadeneira, M., Kuzior, A., Quintana-Arroyo, S., et al. (2017) Dulaglutide Added on Empagliflozin Improves Blood Pressure, Body Weight, Glycemic Control and Albuminuria in Obese Diabetic Patients. Endocrine Abstracts, 49, EP621. https://doi.org/10.1530/endoabs.49.ep621 |
[62] | Molero, I.G., Vallejo, R., Dominguez, M. and Garcia-Arnes, J. (2013) Efficacy and Safety of Liraglutide in Morbid Obese Patients in First Year of Commercialization in Spain. Endocrine Abstracts, 32, P485. https://doi.org/10.1530/endoabs.32.p485 |
[63] | Tičinović Kurir, T. (2020) Adropin – Potential Link in Cardiovascular Protection for Obese Male Type 2 Diabetes Mellitus Patients Treated with Liraglutide. Acta Clinica Croatica, 59, 344-350. https://doi.org/10.20471/acc.2020.59.02.19 |
[64] | Kuchay, M.S., Krishan, S., Mishra, S.K., Choudhary, N.S., Singh, M.K., Wasir, J.S., et al. (2020) Effect of Dulaglutide on Liver Fat in Patients with Type 2 Diabetes and NAFLD: Randomised Controlled Trial (D-LIFT Trial). Diabetologia, 63, 2434-2445. https://doi.org/10.1007/s00125-020-05265-7 |
[65] | González-Ortiz, M., Martínez-Abundis, E., Robles-Cervantes, J.A. and Ramos-Zavala, M.G. (2011) Effect of Exenatide on Fat Deposition and a Metabolic Profile in Patients with Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 9, 31-34. https://doi.org/10.1089/met.2010.0025 |
[66] | Liakos, A., Lambadiari, V., Bargiota, A., Kitsios, K., Avramidis, I., Kotsa, K., et al. (2018) Effect of Liraglutide on Ambulatory Blood Pressure in Patients with Hypertension and Type 2 Diabetes: A Randomized, Double‐Blind, Placebo‐Controlled Trial. Diabetes, Obesity and Metabolism, 21, 517-524. https://doi.org/10.1111/dom.13541 |
[67] | Nakaguchi, H., Kondo, Y., Kyohara, M., Konishi, H., Oiwa, K. and Terauchi, Y. (2020) Effects of Liraglutide and Empagliflozin Added to Insulin Therapy in Patients with Type 2 Diabetes: A Randomized Controlled Study. Journal of Diabetes Investigation, 11, 1542-1550. https://doi.org/10.1111/jdi.13270 |
[68] | Najafi, S., Bahrami, M., Butler, A.E. and Sahebkar, A. (2022) The Effect of Glucagon‐Like Peptide‐1 Receptor Agonists on Serum Uric Acid Concentration: A Systematic Review and Meta‐Analysis. British Journal of Clinical Pharmacology, 88, 3627-3637. https://doi.org/10.1111/bcp.15344 |
[69] | Bailey, C.J. (2019) Uric Acid and the Cardio‐Renal Effects of SGLT2 Inhibitors. Diabetes, Obesity and Metabolism, 21, 1291-1298. https://doi.org/10.1111/dom.13670 |
[70] | Madaan, T., Akhtar, M. and Najmi, A.K. (2016) Sodium Glucose Cotransporter 2 (SGLT2) Inhibitors: Current Status and Future Perspective. European Journal of Pharmaceutical Sciences, 93, 244-252. https://doi.org/10.1016/j.ejps.2016.08.025 |
[71] | Kahathuduwa, C.N., Thomas, D.M., Siu, C. and Allison, D.B. (2018) Unaccounted for Regression to the Mean Renders Conclusion of Article Titled “Uric Acid Lowering in Relation to HbA1c Reductions with the SGLT2 Inhibitor Tofogliflozin” Unsubstantiated. Diabetes, Obesity and Metabolism, 20, 2039-2040. https://doi.org/10.1111/dom.13323 |
[72] | Dong, M., Chen, H., Wen, S., Yuan, Y., Yang, L., Xu, D., et al. (2023) The Mechanism of Sodium-Glucose Cotransporter-2 Inhibitors in Reducing Uric Acid in Type 2 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity, 16, 437-445. https://doi.org/10.2147/dmso.s399343 |