全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Using TiO2-Biocharcoal and TiO2-Diatomite for Photodisinfection in Washing Machine Wastewater

DOI: 10.4236/gep.2024.128004, PP. 62-79

Keywords: Photodisinfection, Diatomite, Biocharcoal, Wastewater, Titanium Dioxide

Full-Text   Cite this paper   Add to My Lib

Abstract:

The photodisinfection process using biomolded semiconductor photocatalysts can inactivate bacteria in wastewater washing machine samples. The comparative study evaluated the photocatalyst material titanium dioxide (TiO2) synthesized with diatomite and biocharcoal biotemplate (TiO2-Biocharcoal and TiO2-Diatomite) in photodisinfection processes using domestic washing machine wastewater samples, the results of bacterial inactivation were above 96%. The efficiency of the photodisinfection process was evaluated by counting the number of colonies of the bacteria. Experiments under LED solar lamps presented similar bacterial inactivation, and a correlation with kinetic models. The kinetic study demonstrated a curved regression, indicating a better fit with the Hom model. A tail at the end of the modeling curve indicates the presence of a high concentration of inactive bacteria in the medium, while a shoulder at the beginning of the curve suggests a heterogeneous sample with a high concentration of gram-positive bacteria. The toxicity tests performed with wastewater samples without light exposure indicated low toxicity for both materials. The study presented promising disinfection results for an accessible and efficient photo-sterilization process of water contaminated with bacteria using abundant solar and renewable energy throughout the national territory.

References

[1]  Bianchi, C. L., Pirola, C., Galli, F., Stucchi, M., Morandi, S., Cerrato, G. et al. (2015). Nano and Micro-TiO2 for the Photodegradation of Ethanol: Experimental Data and Kinetic Modelling. RSC Advances, 5, 53419-53425.
https://doi.org/10.1039/c5ra05385d
[2]  Callewaert, C., Van Nevel, S., Kerckhof, F., Granitsiotis, M. S., & Boon, N. (2015). Bacterial Exchange in Household Washing Machines. Frontiers in Microbiology, 6, Article 1381.
https://doi.org/10.3389/fmicb.2015.01381
[3]  Chen, Y., Wu, Q., Wang, J., & Song, Y. (2019). Retracted Article: Visible-Light-Driven Elimination of Oxytetracycline and Escherichia Coli Using Magnetic La-Doped TiO2/ Copper Ferrite/Diatomite Composite. Environmental Science and Pollution Research, 26, 26593-26604.
https://doi.org/10.1007/s11356-019-05873-w
[4]  Coleman, H. M., Marquis, C. P., Scott, J. A., Chin, S. S., & Amal, R. (2005). Bactericidal Effects of Titanium Dioxide-Based Photocatalysts. Chemical Engineering Journal, 113, 55-63.
https://doi.org/10.1016/j.cej.2005.07.015
[5]  Huesca-Espitia, L. L. D. C., Aurioles-Lopez, V., Ramirez, I., Sánchez-Salas, J. L., Bandala, E. R. (2017). Photocatalytic Inactivation of Highly Resistant Microorganisms in Water: A Kinetic Approach. Journal of Photochemistry and Photobiology A: Chemistry, 337, 132-139.
https://doi.org/10.1016/j.jphotochem.2017.01.025
[6]  Fawzi, T., Rani, S., Roy, S. C., & Lee, H. (2022). Photocatalytic Carbon Dioxide Conversion by Structurally and Materially Modified Titanium Dioxide Nanostructures. International Journal of Molecular Sciences, 23, Article 8143.
https://doi.org/10.3390/ijms23158143
[7]  Ganguly, P., Byrne, C., Breen, A., & Pillai, S. C. (2018). Antimicrobial Activity of Photocatalysts: Fundamentals, Mechanisms, Kinetics and Recent Advances. Applied Catalysis B: Environmental, 225, 51-75.
https://doi.org/10.1016/j.apcatb.2017.11.018
[8]  Gattlen, J., Amberg, C., Zinn, M., & Mauclaire, L. (2010). Biofilms Isolated from Washing Machines from Three Continents and Their Tolerance to a Standard Detergent. Biofouling, 26, 873-882.
https://doi.org/10.1080/08927014.2010.524297
[9]  Geissmann, Q. (2013). Opencfu, a New Free and Open-Source Software to Count Cell Colonies and Other Circular Objects. PLOS ONE, 8, e54072.
https://doi.org/10.1371/journal.pone.0054072
[10]  Gopal, K., Tripathy, S. S., Bersillon, J. L., & Dubey, S. P. (2007). Chlorination Byproducts, Their Toxicodynamics and Removal from Drinking Water. Journal of Hazardous Materials, 140, 1-6.
https://doi.org/10.1016/j.jhazmat.2006.10.063
[11]  Hom, L. W. (1972). Kinetics of Chlorine Disinfection in an Ecosystem. Journal of the Sanitary Engineering Division, 98, 183-194.
https://doi.org/10.1061/jsedai.0001370
[12]  Intergovernmental Panel on Climate Change (IPCC) (2023). Synthesis Report of the IPCC Sixth Assessment Report (AR6).
https://www.ipcc.ch/report/ar6/syr/>
[13]  Levy, K., Smith, S. M., & Carlton, E. J. (2018). Climate Change Impacts on Waterborne Diseases: Moving toward Designing Interventions. Current Environmental Health Reports, 5, 272-282.
https://doi.org/10.1007/s40572-018-0199-7
[14]  Marugán, J., van Grieken, R., Pablos, C., Satuf, M. L., Cassano, A. E., & Alfano, O. M. (2011). Rigorous Kinetic Modelling with Explicit Radiation Absorption Effects of the Photocatalytic Inactivation of Bacteria in Water Using Suspended Titanium Dioxide. Applied Catalysis B: Environmental, 102, 404-416.
https://doi.org/10.1016/j.apcatb.2010.12.012
[15]  Marugán, J., van Grieken, R., Sordo, C., & Cruz, C. (2008). Kinetics of the Photocatalytic Disinfection of Escherichia coli Suspensions. Applied Catalysis B: Environmental, 82, 27-36.
https://doi.org/10.1016/j.apcatb.2008.01.002
[16]  Matsunaga, T., Tomoda, R., Nakajima, T., & Wake, H. (1985). Photoelectrochemical Sterilization of Microbial-Cells by Semiconductor Powders. FEMS Microbiology Letters, 29, 211-214.
[17]  Mesones, S., Mena, E., López-Muñoz, M. J., Adán, C., & Marugán, J. (2020). Synergistic and Antagonistic Effects in the Photoelectrocatalytic Disinfection of Water with TiO2 Supported on Activated Carbon as a Bipolar Electrode in a Novel 3D Photoelectrochemical Reactor. Separation and Purification Technology, 247, Article ID: 117002.
https://doi.org/10.1016/j.seppur.2020.117002
[18]  Najafidoust, A., Allahyari, S., Rahemi, N., & Tasbihi, M. (2020). Uniform Coating of TiO2 Nanoparticles Using Biotemplates for Photocatalytic Wastewater Treatment. Ceramics International, 46, 4707-4719.
https://doi.org/10.1016/j.ceramint.2019.10.202
[19]  Ortega-Gómez, E., Esteban García, B., Ballesteros Martín, M. M., Fernández Ibáñez, P., & Sánchez Pérez, J. A. (2013). Inactivation of Enterococcus Faecalis in Simulated Wastewater Treatment Plant Effluent by Solar Photo-Fenton at Initial Neutral Ph. Catalysis Today, 209, 195-200.
https://www.sciencedirect.com/science/article/pii/S0920586113000795
https://doi.org/10.1016/j.cattod.2013.03.001
[20]  Ortiz, N., Silva, A., Lima, G. N. S., & Hyppolito, F. P. (2018). Using Solar-TiO2 and Biocarbon to Decompose and Adsorb Amoxicillin from Polluted Waters. International Journal of Chemistry, 10, Article 131.
https://doi.org/10.5539/ijc.v10n1p131
[21]  Shimizu, Y., Ateia, M., Wang, M., Awfa, D., & Yoshimura, C. (2019). Disinfection Mechanism of E. coli by CNT-TiO2 Composites: Photocatalytic Inactivation vs. Physical Separation. Chemosphere, 235, 1041-1049.
https://doi.org/10.1016/j.chemosphere.2019.07.006
[22]  Sigma-Aldrich (2024). Product Specification. Titanium (IV) Dioxide, Anatase Nano-Powder.
https://www.sigmaaldrich.com/specification-sheets/440/011/637254-BULK_______ALDRICH__.pdf
[23]  Sunada, K., Watanabe, T., & Hashimoto, K. (2003). Studies on Photokilling of Bacteria on TiO2 Thin Film. Journal of Photochemistry and Photobiology A: Chemistry, 156, 227-233.
https://doi.org/10.1016/s1010-6030(02)00434-3
[24]  Tortora, G. J., Case, C. L., & Funke, B. R. (2016). Microbiology: An Introduction (12th ed.). Pearson.
[25]  Trazzi, P. A., Higa, A. R., Dieckow, J., Mangrich, A. S., & Higa, R. C. V. (2018). Biocarvão: Realidade e potencial de uso no meio florestal. Ciência Florestal, 28, 875-887.
https://doi.org/10.5902/1980509832128
[26]  United Nations Children’s Fund (UNICEF) & World Health Organization (2021). Progress on Household Drinking Water, Sanitation and Hygiene|2000-2020: Five Years into the SDGs.
[27]  United Nations Development Group (UNDG) (2016). The Sustainable Development Goals (SDGs) Are Coming. High Level Political Forum (HLPF).
[28]  Wang, S., Lian, J. S., Zheng, W. T., & Jiang, Q. (2012). Photocatalytic Property of Fe Doped Anatase and Rutile TiO2 Nanocrystal Particles Prepared by Sol-Gel Technique. Applied Surface Science, 263, 260-265.
https://doi.org/10.1016/j.apsusc.2012.09.040
[29]  Watson, H. E. (1908). A Note on the Variation of the Rate of Disinfection with Change in the Concentration of the Disinfectant. Epidemiology and Infection, 8, 536-542.
https://doi.org/10.1017/s0022172400015928
[30]  Wu, Y., Li, X., Yang, Q., Wang, D., Xu, Q., Yao, F. et al. (2019). Hydrated Lanthanum Oxide-Modified Diatomite as Highly Efficient Adsorbent for Low-Concentration Phosphate Removal from Secondary Effluents. Journal of Environmental Management, 231, 370-379.
https://doi.org/10.1016/j.jenvman.2018.10.059
[31]  Zhu, X., Han, S., Feng, W., Kong, Q., Dong, Z., Wang, C. et al. (2018). The Effect of Heat Treatment on the Anatase-Rutile Phase Transformation and Photocatalytic Activity of Sn-Doped TiO2 Nanomaterials. RSC Advances, 8, 14249-14257.
https://doi.org/10.1039/c8ra00766g

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133