|
基于GCN-Transformer模型的短时交通量确定性预测
|
Abstract:
为提高短时交通量的预测精度,充分利用交通网络的拓扑结构与时序信息,本文提出了一种基于GCN-Transformer模型的短时交通量确定性预测。首先读取并预处理四个方向的交通流量数据,构建路网结构邻接矩阵,划分数据集。然后利用GCN提取特征并进行图卷积操作,将输出作为Transformer模型的输入来学习时序信息。最后使用训练好的模型进行预测,并计算评价指标。研究结果表明,本文所提出的混合预测模型GCN-Transformer拥有较好的结果,在采用的四个评价指标中,RMSE、MAE、RMSPE和MAPE的值分别为9.886%、7.977%、11.018%、11.734%。
In order to improve the prediction accuracy of short-term traffic volume and make full use of the topology and timing information of traffic network, a deterministic prediction of short-term traffic volume based on GCN-Transformer model is proposed in this paper. Firstly, the traffic flow data in four directions are read and preprocessed, the network structure adjacency matrix is constructed, and the data set is divided. Then, GCN is used to extract features and perform graph convolution operations, and the output is used as the input of Transformer model to learn timing information. Finally, the trained model is used to predict and the evaluation index is calculated. The research results show that the hybrid prediction model GCN-Transformer proposed in this paper has better results, and the values of RMSE, MAE, RMSPE and MAPE among the four evaluation indicators are 9.886%, 7.977%, 11.018% and 11.734%, respectively.
[1] | 缪荣辉. 考虑突发事件影响下的路网交通量预测方法研究[J]. 交通科技与管理, 2023(17): 27-29. |
[2] | 丁志坤, 朱梦炼, 宋义勇. 基于改进“四阶段法”的高速公路交通量预测研究[J]. 重庆交通大学学报(自然科学版), 2017, 36(5): 86-90. |
[3] | 刘宗明, 贾志绚, 李兴莉. 基于灰色马尔科夫链模型的交通量预测[J]. 华东交通大学学报. 2012, 29(1): 30-34. |
[4] | 罗来鹏. 基于BP神经网络的城市占道交通拥堵预测[J]. 黑龙江工程学院学报, 2016, 30(1): 48-50. |
[5] | Yuan, Z.W., Zhang, W.W. and Yang, M. (2016) A Short-Term Traffic Flow Prediction Approach of Neural Network Based on Cluster Analysis. Proceedings of 2016 3rd International Conference on Engineering Technology and Application, Phuket, 14-15 January 2016, 152-157. |
[6] | 罗文慧, 董宝田, 王泽胜. 基于CNN-SVR混合深度学习模型的短时交通流预测[J]. 交通运输系统工程与信息, 2017, 17(5): 68-74. |
[7] | Tian, Y., Zhang, K.L., Li, J.Y., Lin, X.X. and Yang, B.L. (2018) LSTM-Based Traffic Flow Prediction with Missing Data. Neurocomputing, 318, 297-305. https://doi.org/10.1016/j.neucom.2018.08.067 |
[8] | 罗向龙, 李丹阳, 杨彧, 张生瑞. 基于KNN-LSTM的短时交通流预测[J]. 北京工业大学学报, 2018, 44(12): 1521-1527. |
[9] | 张珊. 基于LSTM和GRU熵权集成的短时交通流预测研究[D]: [硕士学位论文]. 青岛: 山东科技大学, 2019. |
[10] | 高榕, 万以亮, 邵雄凯, 吴歆韵. 面向改进的时空Transformer的交通流量预测模型[J]. 计算机工程与应用, 2023, 59(7): 250-260. |
[11] | 王雨松, 吴向东, 尤晨欣, 等. 基于DWT-GCN的短时交通流预测[J]. 计算机系统应用, 2022, 31(9): 306-312. |
[12] | 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780. |
[13] | 史昕, 曹凤腾, 纪艺, 等. 基于多尺度时空特征和软注意力机制的交通流预测方法[J]. 计算机工程, 2024, 4(24): 1-13. |
[14] | Li, G., Zhong, S., Xiang, L., et al. (2021) A Lightweight and Accurate Spatial-Temporal Transformer for Traffic Forecasting. IEEE Transactions on Knowledge and Data Engineering, 35, 10967-10980. https://doi.org/10.1109/TKDE.2022.3233086 |
[15] | 张力. 基于Transformer的短时交通流预测[J]. 信息与电脑(理论版), 2022, 34(7): 66-68. |
[16] | 杨国亮, 习浩, 龚家仁, 等. 基于Transformer的短时交通流时空预测[J]. 计算机应用与软件, 2024, 41(3): 169-173+225. |
[17] | Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computation, 9, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735 |
[18] | 张阳, 胡月, 陈德旺, 等. 基于GCN-BiLSTM的短时交通流预测模型[J]. 武汉理工大学学报(交通科学与工程版), 2023, 47(5): 802-806. |