|
动力学暗能量与中微子质量
|
Abstract:
随着天文观测技术的不断发展,暗能量的测量已经达到很高的精度。然而,人们对暗能量的本质属性、描述暗能量演化过程的标准宇宙学模型、以及暗能量模型中相互影响的宇宙学参数背后的物理等问题都亟待进一步的探究。目前,与观测实验结果最符合的暗能量模型是宇宙学常数模型,其他宇宙学模型也并没有被观测所排除。因此,构建不同的暗能量模型,分析模型参数的演化行为非常重要。本文介绍了参数化形式不同的动力学暗能量对中微子质量的影响,首次分析了Barbosa-Alcaniz参数化和Jassal-Bagla-Padmanabhan参数化后的暗能量与中微子质量间的关系。本文联合了三种重要的测量宇宙距离–红移关系的天文观测手段,包括Ia型超新星观测、重子声学振荡观测、宇宙微波背景辐射观测,对中微子宇宙学模型进行整体拟合,分析中微子质量和其他宇宙学参数的限制结果。与一般的Chevallier-Polarski-Linder参数化模型中的结果相比,Barbosa-Alcaniz参数化模型可提供一个较大的中微子质量,Jassal-Bagla-Padmanabhan参数化模型提供的中微子质量较小。暗能量状态方程参数的不同形式影响中微子质量的大小。
With the rapid development of astronomical observation technology, the measurement of dark energy has reached a high precision. However, it is urgent to further explore the properties of dark energy, the standard cosmological model that describes the evolution of dark energy, and the physics behind the cosmological parameters that interact with each other in dark energy models. At present, the most consistent dark energy model with observation experiment results is the cosmological constant model, and other cosmological models have not been excluded by observations. Therefore, it is very important to construct different dark energy models and analyze the evolutionary behavior of their model parameters. In this paper, we investigate the influence of different parametrizations of dynamical dark energy on neutrino mass, and analyze the relationship between dynamical dark energy and neutrino mass in the Barbosa-Alcaniz model and the Jassal Bagla-Padmanabhan model for the first time. In this paper, we combine three important astronomical observations that measure the relationship between cosmic distance and redshift, including the type Ia supernova observation, the baryon acoustic oscillations observation, and the cosmic microwave background observation. Overall fitting of neutrino cosmological models and analyze the fitting results of neutrino mass and other cosmological parameters. Compared to the results in the general Chevallier-Polarski-Linder model, the Barbosa-Alcaniz model provides a larger neutrino mass, and the Jassal-Bagla-Padmanabhan parametric model provides a smaller neutrino mass. The different parametrization of the equation of state of dark energy affects the neutrino mass.
[1] | Perlmutter, S., et al. (1997) Cosmology from Type Ia Supernovae. Bulletin of the American Astronomical Society, 29, 1351. |
[2] | Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009-1038. https://doi.org/10.1086/300499 |
[3] | Bahcall, N.A., Ostriker, J.P., Perlmutter, S. and Steinhardt, P.J. (1999) The Cosmic Triangle: Revealing the State of the Universe. Science, 284, 1481-1488. https://doi.org/10.1126/science.284.5419.1481 |
[4] | Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., et al. (1999) Measurements of Ω and λ from 42 High-Redshift Supernovae. The Astrophysical Journal, 517, 565-586. https://doi.org/10.1086/307221 |
[5] | Spergel, D.N., Verde, L., Peiris, H.V., Komatsu, E., Nolta, M.R., Bennett, C.L., et al. (2003) First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. The Astrophysical Journal Supplement Series, 148, 175-194. https://doi.org/10.1086/377226 |
[6] | Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., et al. (2003) First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results. The Astrophysical Journal Supplement Series, 148, 1-27. https://doi.org/10.1086/377253 |
[7] | Tegmark, M., Strauss, M.A., Blanton, M.R., Abazajian, K., Dodelson, S., Sandvik, H., et al. (2004) Cosmological Parameters from SDSS and WMAP. Physical Review D, 69, Article ID: 103501. https://doi.org/10.1103/physrevd.69.103501 |
[8] | Abazajian, K., Adelman-McCarthy, J.K., Agüeros, M.A., Allam, S.S., Anderson, K.S.J., Anderson, S.F., et al. (2004) The Second Data Release of the Sloan Digital Sky Survey. The Astronomical Journal, 128, 502-512. https://doi.org/10.1086/421365 |
[9] | Motta, V., García-Aspeitia, M.A., Hernández-Almada, A., Maga?a, J. and Verdugo, T. (2021) Taxonomy of Dark Energy Models. Universe, 7, Article 163. https://doi.org/10.3390/universe7060163 |
[10] | Hart, L. and Chluba, J. (2022) Using the Cosmological Recombination Radiation to Probe Early Dark Energy and Fundamental Constant Variations. Monthly Notices of the Royal Astronomical Society, 519, 3664-3680. https://doi.org/10.1093/mnras/stac3697 |
[11] | Padmanabhan, T. (2003) Cosmological Constant—The Weight of the Vacuum. Physics Reports, 380, 235-320. https://doi.org/10.1016/s0370-1573(03)00120-0 |
[12] | Peebles, P.J.E. and Ratra, B. (2003) The Cosmological Constant and Dark Energy. Reviews of Modern Physics, 75, 559-606. https://doi.org/10.1103/revmodphys.75.559 |
[13] | Copeland, E.J., Sami, M. and Tsujikawa, S. (2006) Dynamics of Dark Energy. International Journal of Modern Physics D, 15, 1753-1935. https://doi.org/10.1142/s021827180600942x |
[14] | Sahni, V. and Starobinsky, A. (2006) Reconstructing Dark Energy. International Journal of Modern Physics D, 15, 2105-2132. https://doi.org/10.1142/s0218271806009704 |
[15] | Frieman, J.A., Turner, M.S. and Huterer, D. (2008) Dark Energy and the Accelerating Universe. Annual Review of Astronomy and Astrophysics, 46, 385-432. https://doi.org/10.1146/annurev.astro.46.060407.145243 |
[16] | Li, M., Li, X., Wang, S. and Wang, Y. (2011) Dark Energy. Communications in Theoretical Physics, 56, 525-604. https://doi.org/10.1088/0253-6102/56/3/24 |
[17] | Bamba, K., Capozziello, S., Nojiri, S. and Odintsov, S.D. (2012) Dark Energy Cosmology: The Equivalent Description via Different Theoretical Models and Cosmography Tests. Astrophysics and Space Science, 342, 155-228. https://doi.org/10.1007/s10509-012-1181-8 |
[18] | Weinberg, D.H., Mortonson, M.J., Eisenstein, D.J., Hirata, C., Riess, A.G. and Rozo, E. (2013) Observational Probes of Cosmic Acceleration. Physics Reports, 530, 87-255. https://doi.org/10.1016/j.physrep.2013.05.001 |
[19] | Mortonson, M.J., Weinberg, D.H. and White, M. (2017) Dark Energy: A Short Review. arXiv: 1401.0046. |
[20] | 张鑫. 暗能量与宇宙加速膨胀之谜[J]. 科学, 2017, 69(1): 57-60. |
[21] | 柴铮. 暗物质与暗能量研究进展[J]. 科技视界, 2016(26): 345, 350. |
[22] | Ade, P.A.R., et al. (2014) Planck 2013 Results. XVI. Cosmological Parameters. arXiv: 1303.5076. |
[23] | Ade, P.A.R., et al. (2016) Planck 2015 Results. XIII. Cosmological Parameters. arXiv: 1502.01589. |
[24] | Caldwell, R.R., Dave, R. and Steinhardt, P.J. (1998) Cosmological Imprint of an Energy Component with General Equation of State. Physical Review Letters, 80, 1582-1585. https://doi.org/10.1103/physrevlett.80.1582 |
[25] | Sean. M. (2003) Can the Dark Energy Equation-of-State Parameter w Be Less than—1? Physical Review D, 68, Article ID: 023509. |
[26] | Guo, Z., Piao, Y., Zhang, X. and Zhang, Y. (2005) Cosmological Evolution of a Quintom Model of Dark Energy. Physics Letters B, 608, 177-182. https://doi.org/10.1016/j.physletb.2005.01.017 |
[27] | Sahni, V. and Starobinsky, A. (2000) The Case for a Positive Cosmological λ-Term. International Journal of Modern Physics D, 09, 373-443. https://doi.org/10.1142/s0218271800000542 |
[28] | Bean, R., Carroll, S. and Trodden, M. (2005) Insights into Dark Energy: Interplay between Theory and Observation. arXiv: astro-ph/0510059. |
[29] | Aghanim, N., et al. (2018) Planck 2018 results. VI. Cosmological Parameters. arXiv: 1807.06209. |
[30] | Riess, A.G., Casertano, S., Yuan, W., Bowers, J.B., Macri, L., Zinn, J.C., et al. (2021) Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM. The Astrophysical Journal Letters, 908, L6. https://doi.org/10.3847/2041-8213/abdbaf |
[31] | Battye, R.A. and Moss, A. (2014) Evidence for Massive Neutrinos from Cosmic Microwave Background and Lensing Observations. Physical Review Letters, 112, Article ID: 051303. https://doi.org/10.1103/physrevlett.112.051303 |
[32] | Betoule, M., Kessler, R., Guy, J., Mosher, J., Hardin, D., Biswas, R., et al. (2014) Improved Cosmological Constraints from a Joint Analysis of the SDSS-II and SNLS Supernova Samples. Astronomy & Astrophysics, 568, A22. https://doi.org/10.1051/0004-6361/201423413 |
[33] | Bernal, J.L., Verde, L. and Riess, A.G. (2016) The Trouble with H0. arXiv: 1607.05617. https://doi.org/10.1088/1475-7516/2016/10/019 |
[34] | Guo, R., Li, Y., Zhang, J. and Zhang, X. (2017) Weighing Neutrinos in the Scenario of Vacuum Energy Interacting with Cold Dark Matter: Application of the Parameterized Post-Friedmann Approach. arXiv: 1702.04189. https://doi.org/10.1088/1475-7516/2017/05/040 |
[35] | Lesgourgues, J. and Pastor, S. (2006) Massive Neutrinos and Cosmology. Physics Reports, 429, 307-379. https://doi.org/10.1016/j.physrep.2006.04.001 |
[36] | Olive, K.A. (2014) Review of Particle Physics. Chinese Physics C, 38, Article ID: 090001. https://doi.org/10.1088/1674-1137/38/9/090001 |
[37] | Hinshaw, G., Larson, D., Komatsu, E., Spergel, D.N., Bennett, C.L., Dunkley, J., et al. (2013) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. The Astrophysical Journal Supplement Series, 208, Article 19. https://doi.org/10.1088/0067-0049/208/2/19 |
[38] | Sievers, J.L., Hlozek, R.A., Nolta, M.R., Acquaviva, V., Addison, G.E., Ade, P.A.R., et al. (2013) The Atacama Cosmology Telescope: Cosmological Parameters from Three Seasons of Data. Journal of Cosmology and Astroparticle Physics, 2013, Article 60. https://doi.org/10.1088/1475-7516/2013/10/060 |
[39] | Hou, Z., et al. (2014) Constraints on Cosmology from the Cosmic Microwave Background Power Pectrum of the 2500 deg2 SPT-SZ Survey. Astrophys Journal, 782, Article 74. |
[40] | Ade, P.A.R., et al. (2014) Planck 2013 results. XXIV. Constraints on Primordial on Gaussianity. Astronomy & Astrophysics, 571, A24. |
[41] | Abazajian, K.N., Arnold, A., Austermann, J., et al. (2015) Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure. Astroparticle Physics, 63, 66-80. https://doi.org/10.1016/j.astropartphys.2014.05.014 |
[42] | Aghanim, N., et al. (2020) Planck 2018 Results. VI. Cosmological Parameters. Astronomy & Astrophysic, 641, A6. |
[43] | Zhao, M., Li, Y., Zhang, J. and Zhang, X. (2017) Constraining Neutrino Mass and Extra Relativistic Degrees of Freedom in Dynamical Dark Energy Models Using Planck 2015 Data in Combination with Low-Redshift Cosmological Probes: Basic Extensions to ΛCDM Cosmology. Monthly Notices of the Royal Astronomical Society, 469, 1713-1724. https://doi.org/10.1093/mnras/stx978 |
[44] | Zhang, X. (2016) Impacts of Dark Energy on Weighing Neutrinos after Planck 2015. Physical Review D, 93, Article ID: 083011. https://doi.org/10.1103/physrevd.93.083011 |
[45] | Guo, R., Zhang, J. and Zhang, X. (2018) Exploring Neutrino Mass and Mass Hierarchy in the Scenario of Vacuum Energy Interacting with Cold Dark Matter. Chinese Physics C, 42, Article ID: 095103. https://doi.org/10.1088/1674-1137/42/9/095103 |
[46] | Choudhury, S.R. and Hannestad, S. (2020) Updated Results on Neutrino Mass and Mass Hierarchy from Cosmology with Planck 2018 Likelihoods. Journal of Cosmology and Astroparticle Physics, 2020, Article 37. https://doi.org/10.1088/1475-7516/2020/07/037 |
[47] | Li, H. and Zhang, X. (2012) Constraining Dynamical Dark Energy with a Divergence-Free Parametrization in the Presence of Spatial Curvature and Massive Neutrinos. Physics Letters B, 713, 160-164. https://doi.org/10.1016/j.physletb.2012.06.030 |
[48] | Li, Y., Wang, S., Li, X. and Zhang, X. (2013) Holographic Dark Energy in a Universe with Spatial Curvature and Massive Neutrinos: A Full Markov Chain Monte Carlo Exploration. Journal of Cosmology and Astroparticle Physics, 2013, Article 33. https://doi.org/10.1088/1475-7516/2013/02/033 |
[49] | Zhang, J., Li, Y. and Zhang, X. (2014) Cosmological Constraints on Neutrinos after BICEP2. The European Physical Journal C, 74, Article 2954. https://doi.org/10.1140/epjc/s10052-014-2954-8 |
[50] | Zhang, J., Zhao, M., Li, Y. and Zhang, X. (2015) Neutrinos in the Holographic Dark Energy Model: Constraints from Latest Measurements of Expansion History and Growth of Structure. Journal of Cosmology and Astroparticle Physics, 2015, Article 38. https://doi.org/10.1088/1475-7516/2015/04/038 |
[51] | Geng, C., Lee, C., Myrzakulov, R., Sami, M. and Saridakis, E.N. (2016) Observational Constraints on Varying Neutrino-Mass Cosmology. Journal of Cosmology and Astroparticle Physics, 2016, Article 49. https://doi.org/10.1088/1475-7516/2016/01/049 |
[52] | Chen, Y. and Xu, L. (2016) Galaxy Clustering, CMB and Supernova Data Constraints on Φ CDM Model with Massive Neutrinos. Physics Letters B, 752, 66-75. https://doi.org/10.1016/j.physletb.2015.11.022 |
[53] | Vagnozzi, S., Dhawan, S., Gerbino, M., Freese, K., Goobar, A. and Mena, O. (2018) Constraints on the Sum of the Neutrino Masses in Dynamical Dark Energy Models with w(z) ≥ ?1 Are Tighter than Those Obtained in λCDM. Physical Review D, 98, Article ID: 083501. https://doi.org/10.1103/physrevd.98.083501 |
[54] | Loureiro, A., Cuceu, A., Abdalla, F.B., Moraes, B., Whiteway, L., McLeod, M., et al. (2019) Upper Bound of Neutrino Masses from Combined Cosmological Observations and Particle Physics Experiments. Physical Review Letters, 123, Article ID: 081301. https://doi.org/10.1103/physrevlett.123.081301 |
[55] | Riess, A.G., Casertano, S., Yuan, W., Macri, L.M. and Scolnic, D. (2019) Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond λCDM. The Astrophysical Journal, 876, Article 85. https://doi.org/10.3847/1538-4357/ab1422 |
[56] | Wang, L., Zhang, X., Zhang, J. and Zhang, X. (2018) Impacts of Gravitational-Wave Standard Siren Observation of the Einstein Telescope on Weighing Neutrinos in Cosmology. Physics Letters B, 782, 87-93. https://doi.org/10.1016/j.physletb.2018.05.027 |
[57] | Wang, S., Wang, Y., Xia, D. and Zhang, X. (2016) Impacts of Dark Energy on Weighing Neutrinos: Mass Hierarchies Considered. Physical Review D, 94, Article ID: 083519. https://doi.org/10.1103/physrevd.94.083519 |
[58] | Yang, W., Nunes, R.C., Pan, S. and Mota, D.F. (2017) Effects of Neutrino Mass Hierarchies on Dynamical Dark Energy Models. Physical Review D, 95, Article ID: 103522. https://doi.org/10.1103/physrevd.95.103522 |
[59] | Huang, Q., Wang, K. and Wang, S. (2016) Constraints on the Neutrino Mass and Mass Hierarchy from Cosmological Observations. The European Physical Journal C, 76, Article No. 489. https://doi.org/10.1140/epjc/s10052-016-4334-z |
[60] | Zhang, M., Zhang, J. and Zhang, X. (2020) Impacts of Dark Energy on Constraining Neutrino Mass after Planck 2018. Communications in Theoretical Physics, 72, Article ID: 125402. https://doi.org/10.1088/1572-9494/abbb84 |
[61] | Li, M. (2004) A Model of Holographic Dark Energy. Physics Letters B, 603, 1-5. https://doi.org/10.1016/j.physletb.2004.10.014 |
[62] | Huang, Q. and Li, M. (2004) The Holographic Dark Energy in a Non-Flat Universe. Journal of Cosmology and Astroparticle Physics, 2004, Article 13. https://doi.org/10.1088/1475-7516/2004/08/013 |
[63] | Zhang, J., Zhao, M., Cui, J. and Zhang, X. (2014) Revisiting the Holographic Dark Energy in a Non-Flat Universe: Alternative Model and Cosmological Parameter Constraints. The European Physical Journal C, 74, Article 3178. https://doi.org/10.1140/epjc/s10052-014-3178-7 |
[64] | Wang, S., Wang, Y. and Li, M. (2017) Holographic Dark Energy. Physics Reports, 696, 1-57. https://doi.org/10.1016/j.physrep.2017.06.003 |
[65] | Wang, S., Geng, J., Hu, Y. and Zhang, X. (2014) Revisit of Constraints on Holographic Dark Energy: SNLS3 Dataset with the Effects of Time-Varying Β and Different Light-Curve Fitters. Science China Physics, Mechanics & Astronomy, 58, 1-11. https://doi.org/10.1007/s11433-014-5628-5 |
[66] | Cui, J., Xu, Y., Zhang, J. and Zhang, X. (2015) Strong Gravitational Lensing Constraints on Holographic Dark Energy. Science China Physics, Mechanics & Astronomy, 58, Article ID: 110402. https://doi.org/10.1007/s11433-015-5734-z |
[67] | He, D., Zhang, J. and Zhang, X. (2017) Redshift Drift Constraints on Holographic Dark Energy. Science China Physics, Mechanics & Astronomy, 60, Article ID: 039511. https://doi.org/10.1007/s11433-016-0472-1 |
[68] | Xu, Y. and Zhang, X. (2016) Comparison of Dark Energy Models After Planck 2015. The European Physical Journal C, 76, Article No. 588. https://doi.org/10.1140/epjc/s10052-016-4446-5 |
[69] | Chevallier, M. and Polarski, D. (2001) Accelerating Universes with Scaling Dark Matter. International Journal of Modern Physics D, 10, 213-223. https://doi.org/10.1142/s0218271801000822 |
[70] | Linder, E.V. (2003) Exploring the Expansion History of the Universe. Physical Review Letters, 90, Article ID: 091301. https://doi.org/10.1103/physrevlett.90.091301 |
[71] | Astier, P. (2001) Can Luminosity Distance Measurements Probe the Equation of State of Dark Energy? Physics Letters B, 500, 8-15. https://doi.org/10.1016/s0370-2693(01)00072-7 |
[72] | Yao, T., Guo, R. and Zhao, X. (2023) Constraining Neutrino Mass in Dynamical Dark Energy Cosmologies with the Logarithm Parametrization and the Oscillating Parametrization. Journal of High Energy Physics, Gravitation and Cosmology, 9, 1044-1061. https://doi.org/10.4236/jhepgc.2023.94076 |
[73] | Barboza, E.M. and Alcaniz, J.S. (2008) A Parametric Model for Dark Energy. Physics Letters B, 666, 415-419. https://doi.org/10.1016/j.physletb.2008.08.012 |
[74] | Valentino, E.D., Gariazzo, S., Mena, O. and Vagnozzi, S. (2020) Soundness of Dark Energy Properties. Journal of Cosmology and Astroparticle Physics, 2020, Article 45. https://doi.org/10.1088/1475-7516/2020/07/045 |
[75] | Du, M., Yang, W., Xu, L., Pan, S. and Mota, D.F. (2019) Future Constraints on Dynamical Dark-Energy Using Gravitational-Wave Standard Sirens. Physical Review D, 100, Article ID: 043535. https://doi.org/10.1103/physrevd.100.043535 |
[76] | Pan, S., Yang, W. and Paliathanasis, A. (2020) Imprints of an Extended Chevallier-Polarski-Linder Parametrization on the Large Scale of Our Universe. The European Physical Journal C, 80, Article 274. https://doi.org/10.1140/epjc/s10052-020-7832-y |
[77] | Jassal, H.K., Bagla, J.S. and Padmanabhan, T. (2005) WMAP Constraints on Low Redshift Evolution of Dark Energy. Monthly Notices of the Royal Astronomical Society: Letters, 356, L11-L16. https://doi.org/10.1111/j.1745-3933.2005.08577.x |
[78] | Denitsa, S. (2022) DE Models with Combined H0?rd from BAO and CMB Dataset and Friends. Universe, 8, Article No. 631. https://doi.org/10.3390/universe8120631 |
[79] | Aghanim, N., Akrami, Y., Ashdown, M., et al. (2018) Planck 2018 Results. III. High Frequency Instrument Data Processing and Frequency Maps. arXiv:1807.06207. |
[80] | Aghanim, N., Akrami, Y., Ashdown, M., et al. (2020) Planck 2018 Results. VI. Cosmological Parameters. arXiv: 1807.06209. |
[81] | Gazta?aga, E., Cabré, A. and Hui, L. (2009) Clustering of Luminous Red Galaxies—IV. Baryon Acoustic Peak in the Line-Of-Sight Direction and a Direct Measurement of H(z). Monthly Notices of the Royal Astronomical Society, 399, 1663-1680. https://doi.org/10.1111/j.1365-2966.2009.15405.x |
[82] | Perkovi?, D. and ?tefan?i?, H. (2020) Barotropic Fluid Compatible Parametrizations of Dark Energy. The European Physical Journal C, 80, Article No. 629. https://doi.org/10.1140/epjc/s10052-020-8199-9 |
[83] | Pacif, S.K.J. (2020) Dark Energy Models from a Parametrization of H: A Comprehensive Analysis and Observational Constraints. The European Physical Journal Plus, 135, Article No. 792. https://doi.org/10.1140/epjp/s13360-020-00769-y |
[84] | Cárdenas, V.H., Cruz, M., Lepe, S. and Salgado, P. (2021) Reconstructing Mimetic Cosmology. Physics of the Dark Universe, 31, Article ID: 100775. https://doi.org/10.1016/j.dark.2021.100775 |
[85] | Scolnic, D.M., Jones, D.O., Rest, A., Pan, Y.C., Chornock, R., Foley, R.J., et al. (2018) The Complete Light-Curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. The Astrophysical Journal, 859, Article 101. https://doi.org/10.3847/1538-4357/aab9bb |
[86] | Ren, X., Wong, T.H.T., Cai, Y. and Saridakis, E.N. (2021) Data-Driven Reconstruction of the Late-Time Cosmic Acceleration with f(T) Gravity. Physics of the Dark Universe, 32, Article ID: 100812. https://doi.org/10.1016/j.dark.2021.100812 |
[87] | Rezaei, M. and Peracaula, J.S. (2022) Running Vacuum versus Holographic Dark Energy: A Cosmographic Comparison. The European Physical Journal C, 82, Article No. 765. https://doi.org/10.1140/epjc/s10052-022-10653-x |
[88] | Wang, H. and Piao, Y. (2022) Testing Dark Energy after Pre-Recombination Early Dark Energy. Physics Letters B, 832, Article ID: 137244. https://doi.org/10.1016/j.physletb.2022.137244 |
[89] | Yang, W., Giarè, W., Pan, S., Di Valentino, E., Melchiorri, A. and Silk, J. (2023) Revealing the Effects of Curvature on the Cosmological Models. Physical Review D, 107, Article ID: 063509. https://doi.org/10.1103/physrevd.107.063509 |
[90] | Jassal, H.K., Bagla, J.S. and Padmanabhan, T. (2005) Observational Constraints on Low Redshift Evolution of Dark Energy: How Consistent Are Different Observations? Physical Review D, 72, Article ID: 103503. https://doi.org/10.1103/physrevd.72.103503 |