全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

人工智能应用于糖尿病的文献计量学分析
Bibliometric Analysis of Artificial Intelligence Applications in Diabetes Mellitus

DOI: 10.12677/ns.2024.137137, PP. 963-972

Keywords: 人工智能,糖尿病,VOSviewer,CiteSpace,文献计量学分析
Artificial Intelligence
, Diabetes Mellitus, VOSviewer, CiteSpace, Bibliometric Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:通过文献计量学分析人工智能(AI)在糖尿病(DM)领域的应用情况,阐明AI在DM领域的研究现状、热点和趋势,为未来的研究提供参考。方法:以Web of Science数据库为来源,检索建库至2024-05-10的AI应用于DM领域的相关研究,运用VOSviewer和CiteSpace软件对纳入研究的发文量、国家、作者、机构和关键词进行文献计量学分析。结果:共获得8007篇文献,2014年1月至2024年5月发文量总体呈上升趋势,美国(2076篇)发文量最多。809名核心作者,共计发文4449篇;发文量最高的作者是Acharya,U. Rajendra (24篇)和被引频次最高的作者是Uelmen,Sacha (2709次)。发文量最高的机构为哈佛医学院(120篇)。AI应用于DR研究的最新热点为machine learning (机器学习)和deep learning (深度学习),其他共现频次较高的关键词是分类、诊断、自我管理、危险因素。结论AI在DM的研究热点为机器学习和深度学习,未来研究可重点关注机器学习应用于DM的分类、诊断、自我管理、危险因素预测。
Objective: To summarize the application of Artificial Intelligence (AI) in the field of Diabetes Mellitus (DM) through bibliometric analysis, to illustrate the current status, hotspots, and emerging trends of AI related research in the field of DM, and to provide references for future research. Methods: Using the Web of Science database as a source, we searched for studies related to the application of AI in the field of DM from the establishment of the database to 2024-05-10. Using VOSviewer and CiteSpace software to conduct a bibliometric analysis of the number of articles, countries, authors, institutions, and keywords included in the studies. Result: A total of 8007 documents were obtained, and the number of publications from January 2014 to May 2024 showed an overall upward trend, with the United States having the largest number of publications (2076). There are 809 core authors who have published a total of 4449 documents; the author with the highest number of publications is Acharya, U. Rajendra (24 publications), and the author with the highest number of citations is Uelmen, Sacha (2709 citations). The institution with the highest number of publications was Harvard Medical School with 120 publications. The newest hotspots for AI in DR research are machine learning and deep learning, and other keywords with high co-occurrence are classification, diagnosis, self-management, and risk factors. Conclusion: The research hotspot of AI in DM is machine learning and deep learning, and future research could focus on applying machine learning to the classification, diagnosis, self-management, and risk factor prediction of DM.

References

[1]  Harreiter, J. and Roden, M. (2019) Diabetes Mellitus—Definition, Klassifikation, Diagnose, Screening und Pr?vention (Update 2019). Wiener klinische Wochenschrift, 131, 6-15.
https://doi.org/10.1007/s00508-019-1450-4
[2]  Cho, N.H., Shaw, J.E., Karuranga, S., Huang, Y., da Rocha Fernandes, J.D., Ohlrogge, A.W., et al. (2018) IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045. Diabetes Research and Clinical Practice, 138, 271-281.
https://doi.org/10.1016/j.diabres.2018.02.023
[3]  中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华糖尿病杂志, 2021, 13(4): 315-409.
[4]  Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., et al. (2019) Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Research and Clinical Practice, 157, Article 107843.
https://doi.org/10.1016/j.diabres.2019.107843
[5]  Rigla, M., García-Sáez, G., Pons, B. and Hernando, M.E. (2017) Artificial Intelligence Methodologies and Their Application to Diabetes. Journal of Diabetes Science and Technology, 12, 303-310.
https://doi.org/10.1177/1932296817710475
[6]  李婷, 孙媛媛, 李雪玲, 等. 基于机器学习分类算法的糖尿病辅助诊断研究[J]. 电脑知识与技术, 2024, 20(10): 27-29.
[7]  曹长玲, 翁郁华, 李晓琼, 等. 基于机器学习的糖尿病视网膜病变合并症风险预测模型[J]. 生命科学仪器, 2023, 21(2): 56-63.
[8]  刘美宏, 董利平. 机器学习及其算法在社区老年2型糖尿病血糖控制影响因素评估中的应用价值[J]. 河北医药, 2024, 46(9): 1431-1433, 1437.
[9]  Chen, C. and Song, M. (2019) Visualizing a Field of Research: A Methodology of Systematic Scientometric Reviews. PLOS ONE, 14, e0223994.
https://doi.org/10.1371/journal.pone.0223994
[10]  Van Eck, N.J. and Waltman, L. (2009) Software Survey: Vosviewer, a Computer Program for Bibliometric Mapping. Scientometrics, 84, 523-538.
https://doi.org/10.1007/s11192-009-0146-3
[11]  Yao, L., Hui, L., Yang, Z., Chen, X. and Xiao, A. (2020) Freshwater Microplastics Pollution: Detecting and Visualizing Emerging Trends Based on Citespace II. Chemosphere, 245, Article 125627.
https://doi.org/10.1016/j.chemosphere.2019.125627
[12]  Naseem, A., Habib, R., Naz, T., Atif, M., Arif, M. and Allaoua Chelloug, S. (2022) Novel Internet of Things Based Approach toward Diabetes Prediction Using Deep Learning Models. Frontiers in Public Health, 10, Article 914106.
https://doi.org/10.3389/fpubh.2022.914106
[13]  Liu, L., Bi, B., Cao, L., Gui, M. and Ju, F. (2024) Predictive Model and Risk Analysis for Peripheral Vascular Disease in Type 2 Diabetes Mellitus Patients Using Machine Learning and Shapley Additive Explanation. Frontiers in Endocrinology, 15, Article 1320335.
https://doi.org/10.3389/fendo.2024.1320335
[14]  Nicolucci, A., Romeo, L., Bernardini, M., Vespasiani, M., Rossi, M.C., Petrelli, M., et al. (2022) Prediction of Complications of Type 2 Diabetes: A Machine Learning Approach. Diabetes Research and Clinical Practice, 190, Article 110013.
https://doi.org/10.1016/j.diabres.2022.110013
[15]  Sevli, O. (2022) Diyabet hastal???n?n farkl? s?n?fland?r?c?lar kullan?larak te?hisi. Gazi üniversitesi Mühendislik Mimarl?k Fakültesi Dergisi, 38, 989-1002.
[16]  Roobini, M.S., Lakshmi, M., Rajalakshmi, R., Sujihelen, L. and Babu, K. (2023) Type 2 Diabetes Mellitus Classification Using Predictive Supervised Learning Model. Soft Computing.
https://doi.org/10.1007/s00500-023-08726-4
[17]  Chen, T.T., Wu, H. and Chiu, M. (2024) A Deep Neural Network with Modified Random Forest Incremental Interpretation Approach for Diagnosing Diabetes in Smart Healthcare. Applied Soft Computing, 152, Article 111183.
https://doi.org/10.1016/j.asoc.2023.111183
[18]  Kozinetz, R.M., Berikov, V.B., Semenova, J.F. and Klimontov, V.V. (2024) Machine Learning and Deep Learning Models for Nocturnal High-and Low-Glucose Prediction in Adults with Type 1 Diabetes. Diagnostics, 14, Article 740.
https://doi.org/10.3390/diagnostics14070740
[19]  韦哲, 于金玉, 曹彤, 等. 基于机器学习的糖尿病并发症预测模型研究进展[J]. 中国医学装备, 2022, 19(2): 14-17.
[20]  Basiri, R., Manji, K., LeLievre, P.M., Toole, J., Kim, F., Khan, S.S., et al. (2024) Protocol for Metadata and Image Collection at Diabetic Foot Ulcer Clinics: Enabling Research in Wound Analytics and Deep Learning. BioMedical Engineering OnLine, 23, Article No. 12.
https://doi.org/10.1186/s12938-024-01210-6
[21]  徐澄. 基于机器学习的糖尿病并发症风险预测研究[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2024.
[22]  Cheng, Y., Wu, Y., Lin, K., Lin, C. and Lin, I. (2023) Using Machine Learning for the Risk Factors Classification of Glycemic Control in Type 2 Diabetes Mellitus. Healthcare, 11, Article 1141.
https://doi.org/10.3390/healthcare11081141
[23]  Jacobs, P.G., Herrero, P., Facchinetti, A., Vehi, J., Kovatchev, B., Breton, M.D., et al. (2024) Artificial Intelligence and Machine Learning for Improving Glycemic Control in Diabetes: Best Practices, Pitfalls, and Opportunities. IEEE Reviews in Biomedical Engineering, 17, 19-41.
https://doi.org/10.1109/rbme.2023.3331297
[24]  Alexiadis, A., Tsanas, A., Shtika, L., Efopoulos, V., Votis, K., Tzovaras, D., et al. (2024) Next-Day Prediction of Hypoglycaemic Episodes Based on the Use of a Mobile App for Diabetes Self-management. IEEE Access, 12, 7469-7478.
https://doi.org/10.1109/access.2024.3350201
[25]  Kurdi, S., Alamer, A., Wali, H., Badr, A.F., Pendergrass, M.L., Ahmed, N., et al. (2023) Proof-of-Concept Study of Using Supervised Machine Learning Algorithms to Predict Self-Care and Glycemic Control in Type 1 Diabetes Patients on Insulin Pump Therapy. Endocrine Practice, 29, 448-455.
https://doi.org/10.1016/j.eprac.2023.03.002
[26]  Ni Ki, C., Hosseinian-Far, A., Daneshkhah, A. and Salari, N. (2021) Topic Modelling in Precision Medicine with Its Applications in Personalized Diabetes Management. Expert Systems, 39, e12774.
https://doi.org/10.1111/exsy.12774
[27]  Anaya-Isaza, A. and Zequera-Diaz, M. (2022) Detection of Diabetes Mellitus with Deep Learning and Data Augmentation Techniques on Foot Thermography. IEEE Access, 10, 59564-59591.
https://doi.org/10.1109/access.2022.3180036
[28]  Wang, Y., Sun, P., Zhao, Z., Yan, Y., Yue, W., Yang, K., et al. (2023) Identify Gestational Diabetes Mellitus by Deep Learning Model from Cell-Free DNA at the Early Gestation Stage. Briefings in Bioinformatics, 25, bbad492.
https://doi.org/10.1093/bib/bbad492
[29]  Rajalakshmi, R., Sivakumar, P., Kumari, L.K. and Selvi, M.C. (2023) A Novel Deep Learning Model for Diabetes Melliuts Prediction in IoT-Based Healthcare Environment with Effective Feature Selection Mechanism. The Journal of Supercomputing, 80, 271-291.
https://doi.org/10.1007/s11227-023-05496-6
[30]  Dong, Z., Wang, Q., Ke, Y., Zhang, W., Hong, Q., Liu, C., et al. (2022) Prediction of 3-Year Risk of Diabetic Kidney Disease Using Machine Learning Based on Electronic Medical Records. Journal of Translational Medicine, 20, Article No. 143.
https://doi.org/10.1186/s12967-022-03339-1
[31]  Neri-Rosario, D., Martínez-López, Y.E., Esquivel-Hernández, D.A., Sánchez-Casta?eda, J.P., Padron-Manrique, C., Vázquez-Jiménez, A., et al. (2023) Dysbiosis Signatures of Gut Microbiota and the Progression of Type 2 Diabetes: A Machine Learning Approach in a Mexican Cohort. Frontiers in Endocrinology, 14, Article 1170459.
https://doi.org/10.3389/fendo.2023.1170459
[32]  Alharbi, A. and Alghahtani, M. (2018) Using Genetic Algorithm and ELM Neural Networks for Feature Extraction and Classification of Type 2-Diabetes Mellitus. Applied Artificial Intelligence, 33, 311-328.
https://doi.org/10.1080/08839514.2018.1560545

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133