全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

蛋白冠对纳米颗粒与单核巨噬细胞相互作用的影响
Effect of Protein Corona on the Interaction between Nanoparticles and Mononuclear Macrophages

DOI: 10.12677/acm.2024.1472121, PP. 1117-1127

Keywords: 蛋白冠,纳米颗粒,巨噬细胞
Protein Corona
, Nanoparticles, Macrophages

Full-Text   Cite this paper   Add to My Lib

Abstract:

纳米颗粒凭借其独特的物理和化学性质,在药物递送和疾病诊断领域展现出巨大潜力。然而,尽管纳米颗粒研究广泛,但目前仅有部分纳米疗法成功应用于临床,这主要归因于当前研究对纳米颗粒与生物流体环境复杂交互作用的忽视。在纳米颗粒进入生物体后,其与免疫系统的相互作用成为决定治疗效果的关键因素。单核巨噬细胞,作为免疫系统的先锋,对纳米颗粒的识别和响应直接影响治疗的效果和安全性。此外,纳米颗粒进入生物环境后其表面会形成由多种蛋白质构成的复杂蛋白冠,这不仅为纳米颗粒带来了独特的物理化学特性,还为其与生物体互作提供了全新界面。蛋白冠的形成对纳米颗粒在生物体内的行为产生深远影响,进而决定了纳米医学治疗的最终效果。因此,本文聚焦于纳米颗粒–蛋白冠复合体与单核巨噬细胞间的相互作用,深入探讨了蛋白冠的形成对纳米颗粒治疗效果的具体影响。这一研究不仅有助于优化纳米药物的设计,更对提高纳米医学的临床应用水平具有重要的理论和实践意义。
Nanoparticles exhibit tremendous potential in the fields of drug delivery and disease diagnosis due to their unique physical and chemical properties. However, despite extensive research on nanoparticles, only a few nanotherapies have been successfully applied in clinical practice, mainly due to the current lack of attention to the complex interactions between nanoparticles and biological fluid environments. After nanoparticles enter the organism, their interaction with the immune system becomes a crucial factor determining therapeutic efficacy. Mononuclear macrophages, as the frontline of the immune system, directly influence the therapeutic effect and safety through their recognition and response to nanoparticles. Additionally, a complex protein corona composed of various proteins forms on the surface of nanoparticles upon entering the biological environment. This not only brings unique physicochemical properties to nanoparticles but also provides a new interface for their interaction with the organism. The formation of the protein corona has a profound impact on the behavior of nanoparticles in the body, ultimately determining the final effect of nanomedicine treatment. Therefore, this review focuses on the interaction between nanoparticle-protein corona complexes and mononuclear macrophages, delving into the specific impact of protein corona formation on the therapeutic effect of nanoparticles. This research not only contributes to optimizing the design of nanomedicines, but also has significant theoretical and practical implications for improving the clinical application level of nanomedicine.

References

[1]  Shi, Y. and Lammers, T. (2019) Combining Nanomedicine and Immunotherapy. Accounts of Chemical Research, 52, 1543-1554.
https://doi.org/10.1021/acs.accounts.9b00148
[2]  Mitchell, M.J., Billingsley, M.M., Haley, R.M., Wechsler, M.E., Peppas, N.A. and Langer, R. (2020) Engineering Precision Nanoparticles for Drug Delivery. Nature Reviews Drug Discovery, 20, 101-124.
https://doi.org/10.1038/s41573-020-0090-8
[3]  Lu, W., Yao, J., Zhu, X. and Qi, Y. (2021) Nanomedicines: Redefining Traditional Medicine. Biomedicine & Pharmacotherapy, 134, Article ID: 111103.
https://doi.org/10.1016/j.biopha.2020.111103
[4]  Sau, S., Dey, A., Pal, P., Das, B., Maity, K.K., Dash, S.K., et al. (2024) Immunomodulatory and Immune-Toxicological Role of Nanoparticles: Potential Therapeutic Applications. International Immunopharmacology, 135, Article ID: 112251.
https://doi.org/10.1016/j.intimp.2024.112251
[5]  Aljabali, A.A., Obeid, M.A., Bashatwah, R.M., Serrano-Aroca, á., Mishra, V., Mishra, Y., et al. (2023) Nanomaterials and Their Impact on the Immune System. International Journal of Molecular Sciences, 24, Article No. 2008.
https://doi.org/10.3390/ijms24032008
[6]  Pondman, K., Le Gac, S. and Kishore, U. (2023) Nanoparticle-Induced Immune Response: Health Risk versus Treatment Opportunity? Immunobiology, 228, Article ID: 152317.
https://doi.org/10.1016/j.imbio.2022.152317
[7]  Dawson, K.A. and Yan, Y. (2021) Current Understanding of Biological Identity at the Nanoscale and Future Prospects. Nature Nanotechnology, 16, 229-242.
https://doi.org/10.1038/s41565-021-00860-0
[8]  Monopoli, M.P., ?berg, C., Salvati, A. and Dawson, K.A. (2012) Biomolecular Coronas Provide the Biological Identity of Nanosized Materials. Nature Nanotechnology, 7, 779-786.
https://doi.org/10.1038/nnano.2012.207
[9]  Wang, S., Zhang, J., Zhou, H., Lu, Y.C., Jin, X., Luo, L., et al. (2023) The Role of Protein Corona on Nanodrugs for Organ-Targeting and Its Prospects of Application. Journal of Controlled Release, 360, 15-43.
https://doi.org/10.1016/j.jconrel.2023.06.014
[10]  Vroman, L. (1962) Effect of Adsorbed Proteins on the Wettability of Hydrophilic and Hydrophobic Solids. Nature, 196, 476-477.
https://doi.org/10.1038/196476a0
[11]  Nienhaus, K. and Nienhaus, G.U. (2023) Mechanistic Understanding of Protein Corona Formation around Nanoparticles: Old Puzzles and New Insights. Small, 19, Article ID: 2301663.
https://doi.org/10.1002/smll.202301663
[12]  Tomak, A., Cesmeli, S., Hanoglu, B.D., Winkler, D. and Oksel Karakus, C. (2021) Nanoparticle-Protein Corona Complex: Understanding Multiple Interactions between Environmental Factors, Corona Formation, and Biological Activity. Nanotoxicology, 15, 1331-1357.
https://doi.org/10.1080/17435390.2022.2025467
[13]  Mahmoudi, M., Lynch, I., Ejtehadi, M.R., Monopoli, M.P., Bombelli, F.B. and Laurent, S. (2011) Protein-Nanoparticle Interactions: Opportunities and Challenges. Chemical Reviews, 111, 5610-5637.
https://doi.org/10.1021/cr100440g
[14]  Tengjisi, Hui, Y., Fan, Y., Zou, D., Talbo, G.H., Yang, G., et al. (2022) Influence of Nanoparticle Mechanical Property on Protein Corona Formation. Journal of Colloid and Interface Science, 606, 1737-1744.
https://doi.org/10.1016/j.jcis.2021.08.148
[15]  Pustulka, S.M., Ling, K., Pish, S.L. and Champion, J.A. (2020) Protein Nanoparticle Charge and Hydrophobicity Govern Protein Corona and Macrophage Uptake. ACS Applied Materials & Interfaces, 12, 48284-48295.
https://doi.org/10.1021/acsami.0c12341
[16]  Piella, J., Bastús, N.G. and Puntes, V. (2016) Size-Dependent Protein-Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona. Bioconjugate Chemistry, 28, 88-97.
https://doi.org/10.1021/acs.bioconjchem.6b00575
[17]  Sch?ffler, M., Semmler-Behnke, M., Sarioglu, H., Takenaka, S., Wenk, A., Schleh, C., et al. (2013) Serum Protein Identification and Quantification of the Corona of 5, 15 and 80 nm Gold Nanoparticles. Nanotechnology, 24, Article No. 265103.
https://doi.org/10.1088/0957-4484/24/26/265103
[18]  Lima, T., Bernfur, K., Vilanova, M. and Cedervall, T. (2020) Understanding the Lipid and Protein Corona Formation on Different Sized Polymeric Nanoparticles. Scientific Reports, 10, Article No. 1129.
https://doi.org/10.1038/s41598-020-57943-6
[19]  Bilardo, R., Traldi, F., Vdovchenko, A. and Resmini, M. (2022) Influence of Surface Chemistry and Morphology of Nanoparticles on Protein Corona Formation. WIREs Nanomedicine and Nanobiotechnology, 14, e1788.
https://doi.org/10.1002/wnan.1788
[20]  Madathiparambil Visalakshan, R., González García, L.E., Benzigar, M.R., Ghazaryan, A., Simon, J., Mierczynska‐Vasilev, A., et al. (2020) The Influence of Nanoparticle Shape on Protein Corona Formation. Small, 16, Article ID: 2000285.
https://doi.org/10.1002/smll.202000285
[21]  Ren, J., Andrikopoulos, N., Velonia, K., Tang, H., Cai, R., Ding, F., et al. (2022) Chemical and Biophysical Signatures of the Protein Corona in Nanomedicine. Journal of the American Chemical Society, 144, 9184-9205.
https://doi.org/10.1021/jacs.2c02277
[22]  Wang, X., Lei, R., Li, L., Fei, X., Ju, R., Sun, X., et al. (2021) Rearrangement of Protein Structures on a Gold Nanoparticle Surface Is Regulated by Ligand Adsorption Modes. Nanoscale, 13, 20425-20436.
https://doi.org/10.1039/d1nr04813a
[23]  Arezki, Y., Delalande, F., Schaeffer-Reiss, C., Cianférani, S., Rapp, M., Lebeau, L., et al. (2022) Surface Charge Influences Protein Corona, Cell Uptake and Biological Effects of Carbon Dots. Nanoscale, 14, 14695-14710.
https://doi.org/10.1039/d2nr03611h
[24]  Docter, D., Westmeier, D., Markiewicz, M., Stolte, S., Knauer, S.K. and Stauber, R.H. (2015) The Nanoparticle Biomolecule Corona: Lessons Learned-Challenge Accepted? Chemical Society Reviews, 44, 6094-6121.
https://doi.org/10.1039/c5cs00217f
[25]  Treuel, L., Brandholt, S., Maffre, P., Wiegele, S., Shang, L. and Nienhaus, G.U. (2014) Impact of Protein Modification on the Protein Corona on Nanoparticles and Nanoparticle-Cell Interactions. ACS Nano, 8, 503-513.
https://doi.org/10.1021/nn405019v
[26]  Almalik, A., Benabdelkamel, H., Masood, A., Alanazi, I.O., Alradwan, I., Majrashi, M.A., et al. (2017) Hyaluronic Acid Coated Chitosan Nanoparticles Reduced the Immunogenicity of the Formed Protein Corona. Scientific Reports, 7, Article No. 10542.
https://doi.org/10.1038/s41598-017-10836-7
[27]  Li, M., Zhang, X., Li, S., Shao, X., Chen, H., Lv, L., et al. (2021) Probing Protein Dissociation from Gold Nanoparticles and the Influence of Temperature from the Protein Corona Formation Mechanism. RSC Advances, 11, 18198-18204.
https://doi.org/10.1039/d1ra02116h
[28]  Xu, X., Liao, H., Liu, H., Chu, Y., He, Y. and Wang, Y. (2021) A Water-Soluble Photothermal Host-Guest Complex with pH-Sensitive Superlarge Redshift Absorption. CCS Chemistry, 3, 2520-2529.
https://doi.org/10.31635/ccschem.020.202000505
[29]  Shan, H., Zhao, Q., Guo, Y., Gao, M., Xu, X., McClements, D.J., et al. (2023) Impact of pH on the Formation and Properties of Whey Protein Coronas around TiO2 Nanoparticles. Journal of Agricultural and Food Chemistry, 71, 5756-5769.
https://doi.org/10.1021/acs.jafc.3c00073
[30]  Sch?ttler, S., Landfester, K. and Mail?nder, V. (2016) Controlling the Stealth Effect of Nanocarriers through Understanding the Protein Corona. Angewandte Chemie International Edition, 55, 8806-8815.
https://doi.org/10.1002/anie.201602233
[31]  Capolla, S., Colombo, F., De Maso, L., Mauro, P., Bertoncin, P., K?hne, T., et al. (2023) Surface Antibody Changes Protein Corona both in Human and Mouse Serum but Not Final Opsonization and Elimination of Targeted Polymeric Nanoparticles. Journal of Nanobiotechnology, 21, Article No. 376.
https://doi.org/10.1186/s12951-023-02134-4
[32]  Tang, H., Zhang, Y., Yang, T., Wang, C., Zhu, Y., Qiu, L., et al. (2023) Cholesterol Modulates the Physiological Response to Nanoparticles by Changing the Composition of Protein Corona. Nature Nanotechnology, 18, 1067-1077.
https://doi.org/10.1038/s41565-023-01455-7
[33]  Han, S., da Costa Marques, R., Simon, J., Kaltbeitzel, A., Koynov, K., Landfester, K., et al. (2023) Endosomal Sorting Results in a Selective Separation of the Protein Corona from Nanoparticles. Nature Communications, 14, Article No. 295.
https://doi.org/10.1038/s41467-023-35902-9
[34]  Tavakoli, S., Kari, O.K., Turunen, T., Lajunen, T., Schmitt, M., Lehtinen, J., et al. (2020) Diffusion and Protein Corona Formation of Lipid-Based Nanoparticles in the Vitreous Humor: Profiling and Pharmacokinetic Considerations. Molecular Pharmaceutics, 18, 699-713.
https://doi.org/10.1021/acs.molpharmaceut.0c00411
[35]  Agrahari, V., Burnouf, P., Burnouf, T. and Agrahari, V. (2019) Nanoformulation Properties, Characterization, and Behavior in Complex Biological Matrices: Challenges and Opportunities for Brain-Targeted Drug Delivery Applications and Enhanced Translational Potential. Advanced Drug Delivery Reviews, 148, 146-180.
https://doi.org/10.1016/j.addr.2019.02.008
[36]  Ngobili, T.A. and Daniele, M.A. (2016) Nanoparticles and Direct Immunosuppression. Experimental Biology and Medicine, 241, 1064-1073.
https://doi.org/10.1177/1535370216650053
[37]  Tran, T.T. and Roffler, S.R. (2023) Interactions between Nanoparticle Corona Proteins and the Immune System. Current Opinion in Biotechnology, 84, Article ID: 103010.
https://doi.org/10.1016/j.copbio.2023.103010
[38]  Wang, Y., Zhou, Y., Sun, J., Wang, X., Jia, Y., Ge, K., et al. (2022) The Yin and Yang of the Protein Corona on the Delivery Journey of Nanoparticles. Nano Research, 16, 715-734.
https://doi.org/10.1007/s12274-022-4849-6
[39]  Cai, R. and Chen, C. (2018) The Crown and the Scepter: Roles of the Protein Corona in Nanomedicine. Advanced Materials, 31, Article ID: 1805740.
https://doi.org/10.1002/adma.201805740
[40]  Lunov, O., Syrovets, T., Loos, C., Beil, J., Delacher, M., Tron, K., et al. (2011) Differential Uptake of Functionalized Polystyrene Nanoparticles by Human Macrophages and a Monocytic Cell Line. ACS Nano, 5, 1657-1669.
https://doi.org/10.1021/nn2000756
[41]  Chinen, A.B., Guan, C.M., Ko, C.H. and Mirkin, C.A. (2017) The Impact of Protein Corona Formation on the Macrophage Cellular Uptake and Biodistribution of Spherical Nucleic Acids. Small, 13, Article ID: 1603847.
https://doi.org/10.1002/smll.201603847
[42]  Marques, C., Hajipour, M.J., Marets, C., Oudot, A., Safavi-sohi, R., Guillemin, M., et al. (2023) Identification of the Proteins Determining the Blood Circulation Time of Nanoparticles. ACS Nano, 17, 12458-12470.
https://doi.org/10.1021/acsnano.3c02041
[43]  Cheng, X., Tian, X., Wu, A., Li, J., Tian, J., Chong, Y., et al. (2015) Protein Corona Influences Cellular Uptake of Gold Nanoparticles by Phagocytic and Nonphagocytic Cells in a Size-Dependent Manner. ACS Applied Materials & Interfaces, 7, 20568-20575.
https://doi.org/10.1021/acsami.5b04290
[44]  Kim, H., Yuk, S.A., Dieterly, A.M., Kwon, S., Park, J., Meng, F., et al. (2021) Nanosac, a Noncationic and Soft Polyphenol Nanocapsule, Enables Systemic Delivery of siRNA to Solid Tumors. ACS Nano, 15, 4576-4593.
https://doi.org/10.1021/acsnano.0c08694
[45]  Liu, N., Liang, Y., Wei, T., Huang, X., Zhang, T. and Tang, M. (2024) Protein Corona Exacerbated Inflammatory Response in Macrophages Elicited by CdTe Quantum Dots. NanoImpact, 33, Article ID: 100494.
https://doi.org/10.1016/j.impact.2024.100494
[46]  Mohammad-Beigi, H., Scavenius, C., Jensen, P.B., Kjaer-Sorensen, K., Oxvig, C., Boesen, T., et al. (2020) Tracing the in Vivo Fate of Nanoparticles with a “Non-Self” Biological Identity. ACS Nano, 14, 10666-10679.
https://doi.org/10.1021/acsnano.0c05178
[47]  Obst, K., Yealland, G., Balzus, B., Miceli, E., Dimde, M., Weise, C., et al. (2017) Protein Corona Formation on Colloidal Polymeric Nanoparticles and Polymeric Nanogels: Impact on Cellular Uptake, Toxicity, Immunogenicity, and Drug Release Properties. Biomacromolecules, 18, 1762-1771.
https://doi.org/10.1021/acs.biomac.7b00158
[48]  Saha, K., Rahimi, M., Yazdani, M., Kim, S.T., Moyano, D.F., Hou, S., et al. (2016) Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona. ACS Nano, 10, 4421-4430.
https://doi.org/10.1021/acsnano.6b00053
[49]  Mo, J., Xie, Q., Wei, W. and Zhao, J. (2018) Revealing the Immune Perturbation of Black Phosphorus Nanomaterials to Macrophages by Understanding the Protein Corona. Nature Communications, 9, Article No. 2480.
https://doi.org/10.1038/s41467-018-04873-7
[50]  Cai, R., Ren, J., Ji, Y., Wang, Y., Liu, Y., Chen, Z., et al. (2019) Corona of Thorns: The Surface Chemistry-Mediated Protein Corona Perturbs the Recognition and Immune Response of Macrophages. ACS Applied Materials & Interfaces, 12, 1997-2008.
https://doi.org/10.1021/acsami.9b15910
[51]  Yang, M., Wu, E., Tang, W., Qian, J. and Zhan, C. (2021) Interplay between Nanomedicine and Protein Corona. Journal of Materials Chemistry B, 9, 6713-6727.
https://doi.org/10.1039/d1tb01063h
[52]  Duan, Y., Liu, Y., Shen, W. and Zhong, W. (2017) Fluorescamine Labeling for Assessment of Protein Conformational Change and Binding Affinity in Protein-Nanoparticle Interaction. Analytical Chemistry, 89, 12160-12167.
https://doi.org/10.1021/acs.analchem.7b02810
[53]  Raoufi, M., Hajipour, M.J., Kamali Shahri, S.M., Schoen, I., Linn, U. and Mahmoudi, M. (2018) Probing Fibronectin Conformation on a Protein Corona Layer around Nanoparticles. Nanoscale, 10, 1228-1233.
https://doi.org/10.1039/c7nr06970g
[54]  Park, J., Park, S.J., Park, J.Y., Kim, S., Kwon, S., Jung, Y., et al. (2021) Unfolded Protein Corona Surrounding Nanotubes Influence the Innate and Adaptive Immune System. Advanced Science, 8, Article ID: 2004979.
https://doi.org/10.1002/advs.202004979
[55]  Leibe, R., Hsiao, I., Fritsch-Decker, S., Kielmeier, U., Wagbo, A.M., Voss, B., et al. (2019) The Protein Corona Suppresses the Cytotoxic and Pro-Inflammatory Response in Lung Epithelial Cells and Macrophages upon Exposure to Nanosilica. Archives of Toxicology, 93, 871-885.
https://doi.org/10.1007/s00204-019-02422-9
[56]  Debnath, M., Forster, J., Ramesh, A. and Kulkarni, A. (2023) Protein Corona Formation on Lipid Nanoparticles Negatively Affects the NLRP3 Inflammasome Activation. Bioconjugate Chemistry, 34, 1766-1779.
https://doi.org/10.1021/acs.bioconjchem.3c00329
[57]  Escamilla-Rivera, V., Uribe-Ramírez, M., González-Pozos, S., Lozano, O., Lucas, S. and De Vizcaya-Ruiz, A. (2016) Protein Corona Acts as a Protective Shield against Fe3O4-PEG Inflammation and ROS-Induced Toxicity in Human Macrophages. Toxicology Letters, 240, 172-184.
https://doi.org/10.1016/j.toxlet.2015.10.018
[58]  Zhang, T., Tang, M., Yao, Y., Ma, Y. and Pu, Y. (2019) MWCNT Interactions with Protein: Surface-Induced Changes in Protein Adsorption and the Impact of Protein Corona on Cellular Uptake and Cytotoxicity. International Journal of Nanomedicine, 14, 993-1009.
https://doi.org/10.2147/ijn.s191689
[59]  Cheng, Z., Li, M., Dey, R. and Chen, Y. (2021) Nanomaterials for Cancer Therapy: Current Progress and Perspectives. Journal of Hematology & Oncology, 14, Article No. 85.
https://doi.org/10.1186/s13045-021-01096-0
[60]  Rezaei, G., Daghighi, S.M., Raoufi, M., Esfandyari-Manesh, M., Rahimifard, M., Mobarakeh, V.I., et al. (2019) Synthetic and Biological Identities of Polymeric Nanoparticles Influencing the Cellular Delivery: An Immunological Link. Journal of Colloid and Interface Science, 556, 476-491.
https://doi.org/10.1016/j.jcis.2019.08.060
[61]  Giulimondi, F., Digiacomo, L., Pozzi, D., Palchetti, S., Vulpis, E., Capriotti, A.L., et al. (2019) Interplay of Protein Corona and Immune Cells Controls Blood Residency of Liposomes. Nature Communications, 10, Article No. 3686.
https://doi.org/10.1038/s41467-019-11642-7
[62]  Moghimi, S.M., Simberg, D., Skotland, T., Yaghmur, A. and Hunter, A.C. (2019) The Interplay between Blood Proteins, Complement, and Macrophages on Nanomedicine Performance and Responses. Journal of Pharmacology and Experimental Therapeutics, 370, 581-592.
https://doi.org/10.1124/jpet.119.258012

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133