全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新型冠状病毒SARS-CoV-2检测技术研究进展
Progress in Detection of Novel Coronavirus SARS-CoV-2

DOI: 10.12677/acm.2024.1472112, PP. 1041-1049

Keywords: 新型冠状病毒,COVID-19,检测,CRISPR/Cas
SARS-COV-2
, COVID-19, Detection, CRISPR/Cas

Full-Text   Cite this paper   Add to My Lib

Abstract:

由新型冠状病毒(SARS-CoV-2)导致的新型冠状病毒感染仍是全世界面临的重要公共卫生事件,且随着病毒基因组不断发生变异,新型变异株出现,病毒传染性和传播能力急剧增强,对人类健康造成严重威胁。快速、高灵敏、高特异、即时检测新型冠状病毒对疫情防控和疾病快速诊治具有十分重要意义。本文基于国内外相关研究文献,对目前新型冠状病毒检测方法进行总结和梳理,包括实时定量RT-PCR、等温核酸扩增技术、CRISPR-Cas核酸检测技术以及高通量测序等核酸检测方法以及酶联免疫吸附法、侧流免疫层析等免疫学方法。进一步,对不同的新型冠状病毒检测方法进行分析和讨论,以期为新型冠状病毒检测和疫情防控提供方法参考。
Novel coronavirus infection caused by the new coronavirus (SARS-CoV-2) is still an important public health event facing the world, and with the continuous mutation of the virus genome and the emergence of new variants, the infectivity and transmissibility of the virus have increased dramatically, posing a serious threat to human health. Rapid, highly sensitive, highly specific, and real-time detection of the novel coronavirus is of great significance for epidemic prevention and control, rapid diagnosis and treatment of diseases. Based on relevant research literature at home and abroad, this paper summarizes and sorts out the current research progress of novel coronavirus detection methods, including real-time RT-PCR, isothermal amplification nucleic acid detection technology, CRISPR-Cas nucleic acid detection technology, high-throughput sequencing and other nucleic acid detection methods, as well as immunological methods such as enzyme-linked immunosorbent detection and antigen colloidal gold test strip. Furthermore, different detection methods were analyzed and compared in order to provide a reference for novel coronavirus detection and epidemic prevention and control.

References

[1]  周烨真, 张世豪, 陈嘉仪, 等. 新型冠状病毒SARS-CoV-2的变异和进化分析[J]. 南方医科大学学报, 2020, 40(2): 152-158.
[2]  罗晓君, 章文贤. 冠状病毒的结构及生物学特性概述[J]. 生物学教学, 2020, 45(7): 4-6.
[3]  Tao, K., Tzou, P.L., Nouhin, J., Gupta, R.K., de Oliveira, T., Kosakovsky Pond, S.L., et al. (2021) The Biological and Clinical Significance of Emerging SARS-CoV-2 Variants. Nature Reviews Genetics, 22, 757-773.
https://doi.org/10.1038/s41576-021-00408-x
[4]  Liu, Y., Wang, Y., Wang, X., Xiao, Y., Chen, L., Guo, L., et al. (2020) Development of Two Taqman Real-Time Reverse Transcription-PCR Assays for the Detection of Severe Acute Respiratory Syndrome Coronavirus-2. Biosafety and Health, 2, 232-237.
https://doi.org/10.1016/j.bsheal.2020.07.009
[5]  Merindol, N., Pépin, G., Marchand, C., Rheault, M., Peterson, C., Poirier, A., et al. (2020) SARS-CoV-2 Detection by Direct rRT-PCR without RNA Extraction. Journal of Clinical Virology, 128, Article ID: 104423.
https://doi.org/10.1016/j.jcv.2020.104423
[6]  Vogels, C.B.F., Brito, A.F., Wyllie, A.L., Fauver, J.R., Ott, I.M., Kalinich, C.C., et al. (2020) Analytical Sensitivity and Efficiency Comparisons of SARS-CoV-2 RT-qPCR Primer-Probe Sets. Nature Microbiology, 5, 1299-1305.
https://doi.org/10.1038/s41564-020-0761-6
[7]  Tahan, S., Parikh, B.A., Droit, L., Wallace, M.A., Burnham, C.D. and Wang, D. (2021) SARS-CoV-2 E Gene Variant Alters Analytical Sensitivity Characteristics of Viral Detection Using a Commercial Reverse Transcription-PCR Assay. Journal of Clinical Microbiology, 59, e00075-21.
https://doi.org/10.1128/jcm.00075-21
[8]  Notomi, T. (2000) Loop-Mediated Isothermal Amplification of DNA. Nucleic Acids Research, 28, 63e.
https://doi.org/10.1093/nar/28.12.e63
[9]  Dao Thi, V.L., Herbst, K., Boerner, K., Meurer, M., Kremer, L.P., Kirrmaier, D., et al. (2020) A Colorimetric RT-LAMP Assay and Lamp-Sequencing for Detecting SARS-CoV-2 RNA in Clinical Samples. Science Translational Medicine, 12, eabc7075.
https://doi.org/10.1126/scitranslmed.abc7075
[10]  Rabe, B.A. and Cepko, C. (2020) SARS-CoV-2 Detection Using Isothermal Amplification and a Rapid, Inexpensive Protocol for Sample Inactivation and Purification. Proceedings of the National Academy of Sciences of the United States of America, 117, 24450-24458.
https://doi.org/10.1073/pnas.2011221117
[11]  Piepenburg, O., Williams, C.H., Stemple, D.L. and Armes, N.A. (2006) DNA Detection Using Recombination Proteins. PLOS Biology, 4, e204.
https://doi.org/10.1371/journal.pbio.0040204
[12]  张淼源, 卢佩珊, 李佳宁, 等. 重组酶聚合酶侧流层析技术检测新冠病毒核酸快速诊断方法的初步建立[J]. 中国人兽共患病学报, 2022, 38(7): 577-581.
[13]  Xia, S. and Chen, X. (2020) Single-Copy Sensitive, Field-Deployable, and Simultaneous Dual-Gene Detection of SARS-CoV-2 RNA via Modified RT-RPA. Cell Discovery, 6, Article No. 37.
https://doi.org/10.1038/s41421-020-0175-x
[14]  Harrison, M.M., Jenkins, B.V., O’Connor-Giles, K.M. and Wildonger, J. (2014) A CRISPR View of Development. Genes & Development, 28, 1859-1872.
https://doi.org/10.1101/gad.248252.114
[15]  Gootenberg, J.S., Abudayyeh, O.O., Lee, J.W., Essletzbichler, P., Dy, A.J., Joung, J., et al. (2017) Nucleic Acid Detection with CRISPR-Cas13a/C2c2. Science, 356, 438-442.
https://doi.org/10.1126/science.aam9321
[16]  Chen, J.S., Ma, E., Harrington, L.B., Da Costa, M., Tian, X., Palefsky, J.M., et al. (2018) CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded DNase Activity. Science, 360, 436-439.
https://doi.org/10.1126/science.aar6245
[17]  Li, Y., Li, S., Wang, J. and Liu, G. (2019) CRISPR/Cas Systems towards Next-Generation Biosensing. Trends in Biotechnology, 37, 730-743.
https://doi.org/10.1016/j.tibtech.2018.12.005
[18]  Broughton, J.P., Deng, X., Yu, G., Fasching, C.L., Servellita, V., Singh, J., et al. (2020) CRISPR/Cas 12-Based Detection of SARS-CoV-2. Nature Biotechnology, 38, 870-874.
https://doi.org/10.1038/s41587-020-0513-4
[19]  Joung, J., Ladha, A., Saito, M., Kim, N., Woolley, A.E., Segel, M., et al. (2020) Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. New England Journal of Medicine, 383, 1492-1494.
https://doi.org/10.1056/nejmc2026172
[20]  Ma, L., Yin, L., Li, X., Chen, S., Peng, L., Liu, G., et al. (2022) A Smartphone-Based Visual Biosensor for CRISPR-Cas Powered SARS-CoV-2 Diagnostics. Biosensors and Bioelectronics, 195, Article ID: 113646.
https://doi.org/10.1016/j.bios.2021.113646
[21]  Maturada, P., Krittapas, J., Archiraya, P., et al. (2020) Clinical Validation of a Cas13-Based Assay for the Detection of SARS-CoV-2 RNA. Nature Biomedical Engineering, 4, 1140-1149.
[22]  Arizti-Sanz, J., Bradley, A., Zhang, Y.B., Boehm, C.K., Freije, C.A., Grunberg, M.E., et al. (2022) Simplified Cas13-Based Assays for the Fast Identification of SARS-CoV-2 and Its Variants. Nature Biomedical Engineering, 6, 932-943.
https://doi.org/10.1038/s41551-022-00889-z
[23]  Yin, L., Man, S., Ye, S., Liu, G. and Ma, L. (2021) CRISPR-Cas Based Virus Detection: Recent Advances and Perspectives. Biosensors and Bioelectronics, 193, Article ID: 113541.
https://doi.org/10.1016/j.bios.2021.113541
[24]  Lu, R., Zhao, X., Li, J., et al. (2020) Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding. The Lancet, 395, 565-574.
[25]  Zhou, P., Yang, X., Wang, X., Hu, B., Zhang, L., Zhang, W., et al. (2020) A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature, 579, 270-273.
https://doi.org/10.1038/s41586-020-2012-7
[26]  Wang, L. and Cheng, G. (2021) Sequence Analysis of the Emerging Sars‐cov‐2 Variant Omicron in South Africa. Journal of Medical Virology, 94, 1728-1733.
https://doi.org/10.1002/jmv.27516
[27]  Wang, M., Fu, A., Hu, B., Tong, Y., Liu, R., Liu, Z., et al. (2020) Nanopore Targeted Sequencing for the Accurate and Comprehensive Detection of SARS‐CoV‐2 and Other Respiratory Viruses. Small, 16, e2002169.
https://doi.org/10.1002/smll.202002169
[28]  Engvall, E. (2010) The ELISA, Enzyme-Linked Immunosorbent Assay. Clinical Chemistry, 56, 319-320.
https://doi.org/10.1373/clinchem.2009.127803
[29]  Liu, W., Liu, L., Kou, G., Zheng, Y., Ding, Y., Ni, W., et al. (2020) Evaluation of Nucleocapsid and Spike Protein-Based Enzyme-Linked Immunosorbent Assays for Detecting Antibodies against SARS-CoV-2. Journal of Clinical Microbiology, 58, e00461-20.
https://doi.org/10.1128/jcm.00461-20
[30]  Li, Z., Yi, Y., Luo, X., Xiong, N., Liu, Y., Li, S., et al. (2020) Development and Clinical Application of a Rapid IgM‐IgG Combined Antibody Test for SARS‐CoV‐2 Infection Diagnosis. Journal of Medical Virology, 92, 1518-1524.
https://doi.org/10.1002/jmv.25727
[31]  Serebrennikova, K.V., Byzova, N.A., Zherdev, A.V., Khlebtsov, N.G., Khlebtsov, B.N., Biketov, S.F., et al. (2021) Lateral Flow Immunoassay of Sars-Cov-2 Antigen with SERS-Based Registration: Development and Comparison with Traditional Immunoassays. Biosensors, 11, Article 510.
https://doi.org/10.3390/bios11120510
[32]  Long, Q., Liu, B., Deng, H., Wu, G., Deng, K., Chen, Y., et al. (2020) Antibody Responses to SARS-CoV-2 in Patients with COVID-19. Nature Medicine, 26, 845-848.
https://doi.org/10.1038/s41591-020-0897-1
[33]  Cai, X., Chen, J., li Hu, J., Long, Q., Deng, H., Liu, P., et al. (2020) A Peptide-Based Magnetic Chemiluminescence Enzyme Immunoassay for Serological Diagnosis of Coronavirus Disease 2019. The Journal of Infectious Diseases, 222, 189-193.
https://doi.org/10.1093/infdis/jiaa243
[34]  Lin, D., Liu, L., Zhang, M., Hu, Y., Yang, Q., Guo, J., et al. (2020) Evaluations of the Serological Test in the Diagnosis of 2019 Novel Coronavirus (SARS-CoV-2) Infections during the COVID-19 Outbreak. European Journal of Clinical Microbiology & Infectious Diseases, 39, 2271-2277.
https://doi.org/10.1007/s10096-020-03978-6
[35]  Santos, S.A.S.B., Cunha, R.L.J., Carvalho, C.I., et al. (2022) Nanotechnology Meets Immunology towards a Rapid Diagnosis Solution: The COVID-19 Outbreak Challenge. RSC Advances, 12, 31711-31728.
https://doi.org/10.1039/d2ra05096j

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133