全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大数据时代下概率论与数理统计课程教学探索
Exploration on the Teaching of Probability and Statistics in the Era of Big Data

DOI: 10.12677/ae.2024.1471237, PP. 807-812

Keywords: 大数据,概率论与数理统计,教学探索,课程思政
Big Data
, Probability and Statistics, Teaching Exploration, Ideological and Political Education

Full-Text   Cite this paper   Add to My Lib

Abstract:

概率论与数理统计课程作为一门研究随机现象模型和数据分析的大学数学公共基础课,在培养学生数据素养和创新能力方面发挥着重要作用。为了适应大数据时代的要求,本文从两个方面对概率论与数理统计课程教学的改进做了探讨。第一,创新教学方法,要充分使用可视化、系统化等方法,生动自然地引入知识点,做到理论联系实际,利用大数据时代的新技术,达到提高教学效果的目的。第二,坚持立德树人,强化课程思政。
As a public basic course of college mathematics, Probability and Statistics which studies stochastic phenomenon model and data analysis plays an important role in cultivating students’ data literacy and innovation ability. In order to meet the requirements of the era of big data, this paper discusses the teaching improvement of Probability and Statistics from two aspects. First, to innovate teaching methods and improve teaching effect, we should make full use of visualization and systematization methods. We also need to introduce knowledge points vividly and naturally, integrate theory with practice and take advantage of new technologies in the era of big data. Second, adhere to the task on fostering integrity and promoting rounded development of people and strengthen ideological and political education.

References

[1]  耿直. 大数据时代统计学面临的机遇与挑战[J]. 统计研究, 2014, 31(1): 5-9.
[2]  茆诗松, 程依明, 濮晓龙. 概率论与数理统计教程[M]. 北京: 高等教育出版社, 2019.
[3]  金今姬, 高彦伟. PBL教学模式在“概率论与数理统计”教学中的应用[J]. 长春师范大学学报, 2023, 42(10): 152-157.
[4]  Kazak, S. and Pratt, D. (2021) Developing the Role of Modelling in the Teaching and Learning of Probability. Research in Mathematics Education, 23, 113-133.
https://doi.org/10.1080/14794802.2020.1802328
[5]  肖敏, 徐静, 唐叶云. 《概率论与数理统计》教学改革思考[J]. 教育进展, 2021, 11(4): 1090-1094.
[6]  肖进胜, 杨力衡, 丁玲, 等. 现代数理统计中假设检验的教学探讨[J]. 高教学刊, 2024, 10(8): 117-120.
[7]  王贶, 朱靖红. “概率论与数理统计”课程思政教学研究——以全概率公式和贝叶斯公式为例[J]. 辽宁工业大学学报(社会科学版), 2024, 26(2): 133-135.
[8]  看见统计. 置信区间[EB/OL].
https://seeing-theory.brown.edu/frequentist-inference/cn.html#section2, 2024-03-08.
[9]  李启寨, 孟珍. 概率论与数理统计[M]. 北京: 高等教育出版社, 2023.
[10]  萨尔斯伯格. 女士品茶[M]. 刘清山, 译. 南昌: 江西人民出版社, 2016.
[11]  王贤彬, 陈春秀. 重点产业政策与制造业就业[J]. 经济研究, 2023, 58(10): 34-54.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133