|
动作对时间加工的影响研究综述
|
Abstract:
时间是人们理解世界的重要维度,对时间信息的准确加工是正确认知、适应外界的必要条件。越来越多的证据表明,时间加工不仅可以指导个体更好地发出动作指令(例如演奏乐器),动作本身也可以影响个体对时间信息的加工:动作既可以使时间加工更加精确,也可以对其产生调制作用。近年,一些脑科学研究显示,与运动相关的脑区可能构成了计时行为神经网络的核心成分,进一步说明了动作系统与时间加工系统之间的紧密联系。本文旨在梳理相关文献,深入探讨动作对时间加工的影响及其潜在的机制。
Time serves as a critical dimension for human understanding of the world, with accurate processing of temporal information being a necessary condition for proper cognition and adaptation to the environment. Increasing evidence suggests that temporal processing not only guides individuals in issuing motor commands more effectively (e.g., playing a musical instrument), but the actions themselves can also influence the processing of temporal information: actions can both enhance the precision of temporal processing and modulate it. In recent years, neuroscience research has shown that brain regions associated with motor functions may constitute core components of the neural network underlying timing behaviors, further illustrating the close relationship between the motor system and the temporal processing system. This paper aims to review relevant literature and delve into the effects of motor on temporal processing, as well as its potential mechanisms.
[1] | Avanzino, L., Pelosin, E., Vicario, C. M., Lagravinese, G., Abbruzzese, G., & Martino, D. (2016). Time Processing and Motor Control in Movement Disorders. Frontiers in Human Neuroscience, 10, Article 631. https://doi.org/10.3389/fnhum.2016.00631 |
[2] | Benedetto, A., & Baud-Bovy, G. (2021). Tapping Force Encodes Metrical Aspects of Rhythm. Frontiers in Human Neuroscience, 15, Article 633956. https://doi.org/10.3389/fnhum.2021.633956 |
[3] | Chemin, B., Mouraux, A., & Nozaradan, S. (2014). Body Movement Selectively Shapes the Neural Representation of Musical Rhythms. Psychological Science, 25, 2147-2159. https://doi.org/10.1177/0956797614551161 |
[4] | Cope, T. E., Grube, M., Singh, B., Burn, D. J., & Griffiths, T. D. (2014). The Basal Ganglia in Perceptual Timing: Timing Performance in Multiple System Atrophy and Huntington’s Disease. Neuropsychologia, 52, 73-81. https://doi.org/10.1016/j.neuropsychologia.2013.09.039 |
[5] | De Kock, R., Gladhill, K. A., Ali, M. N., Joiner, W. M., & Wiener, M. (2021a). How Movements Shape the Perception of Time. Trends in Cognitive Sciences, 25, 950-963. https://doi.org/10.1016/j.tics.2021.08.002 |
[6] | De Kock, R., Zhou, W., Joiner, W. M., & Wiener, M. (2021b). Slowing the Body Slows down Time Perception. eLife, 10, e63607. https://doi.org/10.7554/elife.63607 |
[7] | Falk, S., & Dalla Bella, S. (2016). It Is Better When Expected: Aligning Speech and Motor Rhythms Enhances Verbal Processing. Language, Cognition and Neuroscience, 31, 699-708. https://doi.org/10.1080/23273798.2016.1144892 |
[8] | Falk, S., Volpi-Moncorger, C., & Dalla Bella, S. (2017). Auditory-Motor Rhythms and Speech Processing in French and German Listeners. Frontiers in Psychology, 8, Article 395. https://doi.org/10.3389/fpsyg.2017.00395 |
[9] | Gan, L., Huang, Y., Zhou, L., Qian, C., & Wu, X. (2015). Synchronization to a Bouncing Ball with a Realistic Motion Trajectory. Scientific Reports, 5, Article No. 11974. https://doi.org/10.1038/srep11974 |
[10] | Gavazzi, G., Bisio, A., & Pozzo, T. (2013). Time Perception of Visual Motion Is Tuned by the Motor Representation of Human Actions. Scientific Reports, 3, Article No. 1168. https://doi.org/10.1038/srep01168 |
[11] | Grahn, J. A., & Brett, M. (2007). Rhythm and Beat Perception in Motor Areas of the Brain. Journal of Cognitive Neuroscience, 19, 893-906. https://doi.org/10.1162/jocn.2007.19.5.893 |
[12] | Grahn, J. A., & Brett, M. (2009). Impairment of Beat-Based Rhythm Discrimination in Parkinson’s Disease. Cortex, 45, 54-61. https://doi.org/10.1016/j.cortex.2008.01.005 |
[13] | Gu, L., Huang, Y., & Wu, X. (2019). Advantage of Audition over Vision in a Perceptual Timing Task but Not in a Sensorimotor Timing Task. Psychological Research, 84, 2046-2056. https://doi.org/10.1007/s00426-019-01204-3 |
[14] | Haggard, P., Clark, S., & Kalogeras, J. (2002). Voluntary Action and Conscious Awareness. Nature Neuroscience, 5, 382-385. https://doi.org/10.1038/nn827 |
[15] | Iordanescu, L., Grabowecky, M., & Suzuki, S. (2012). Action Enhances Auditory but Not Visual Temporal Sensitivity. Psychonomic Bulletin & Review, 20, 108-114. https://doi.org/10.3758/s13423-012-0330-y |
[16] | Iversen, J. R., & Balasubramaniam, R. (2016). Synchronization and Temporal Processing. Current Opinion in Behavioral Sciences, 8, 175-180. https://doi.org/10.1016/j.cobeha.2016.02.027 |
[17] | Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal Aspects of Stimulus-Driven Attending in Dynamic Arrays. Psychological Science, 13, 313-319. https://doi.org/10.1111/1467-9280.00458 |
[18] | Kn?ll, J., Morrone, M. C., & Bremmer, F. (2013). Spatio-Temporal Topography of Saccadic Overestimation of Time. Vision Research, 83, 56-65. https://doi.org/10.1016/j.visres.2013.02.013 |
[19] | Large, E. W., & Jones, M. R. (1999). The Dynamics of Attending: How People Track Time-Varying Events. Psychological Review, 106, 119-159. https://doi.org/10.1037/0033-295x.106.1.119 |
[20] | Legaspi, R., & Toyoizumi, T. (2019). A Bayesian Psychophysics Model of Sense of Agency. Nature Communications, 10, Article No. 4250. https://doi.org/10.1038/s41467-019-12170-0 |
[21] | Li, X., Baurès, R., & Cremoux, S. (2023). Hand Movements Influence the Perception of Time in a Prediction Motion Task. Attention, Perception, & Psychophysics, 85, 1276-1286. https://doi.org/10.3758/s13414-023-02690-9 |
[22] | Manning, F. C., & Schutz, M. (2015a). Movement Enhances Perceived Timing in the Absence of Auditory Feedback. Timing & Time Perception, 3, 3-12. https://doi.org/10.1163/22134468-03002037 |
[23] | Manning, F. C., & Schutz, M. (2015b). Trained to Keep a Beat: Movement-Related Enhancements to Timing Perception in Percussionists and Non-Percussionists. Psychological Research, 80, 532-542. https://doi.org/10.1007/s00426-015-0678-5 |
[24] | Manning, F. C., Harris, J., & Schutz, M. (2016). Temporal Prediction Abilities Are Mediated by Motor Effector and Rhythmic Expertise. Experimental Brain Research, 235, 861-871. https://doi.org/10.1007/s00221-016-4845-8 |
[25] | Manning, F. C., Siminoski, A., & Schutz, M. (2020). Exploring the Effects of Effectors. Music Perception, 37, 196-207. https://doi.org/10.1525/mp.2020.37.3.196 |
[26] | Manning, F., & Schutz, M. (2013). “Moving to the Beat” Improves Timing Perception. Psychonomic Bulletin & Review, 20, 1133-1139. https://doi.org/10.3758/s13423-013-0439-7 |
[27] | Mauk, M. D., & Buonomano, D. V. (2004). The Neural Basis of Temporal Processing. Annual Review of Neuroscience, 27, 307-340. https://doi.org/10.1146/annurev.neuro.27.070203.144247 |
[28] | Merchant, H., & Yarrow, K. (2016). How the Motor System Both Encodes and Influences Our Sense of Time. Current Opinion in Behavioral Sciences, 8, 22-27. https://doi.org/10.1016/j.cobeha.2016.01.006 |
[29] | Monier, F., Droit‐Volet, S., & Coull, J. T. (2019). The Beneficial Effect of Synchronized Action on Motor and Perceptual Timing in Children. Developmental Science, 22, e12821. https://doi.org/10.1111/desc.12821 |
[30] | Morillon, B., & Baillet, S. (2017). Motor Origin of Temporal Predictions in Auditory Attention. Proceedings of the National Academy of Sciences of the United States of America, 114, E8913-E8921. https://doi.org/10.1073/pnas.1705373114 |
[31] | Morillon, B., Schroeder, C. E., & Wyart, V. (2014). Motor Contributions to the Temporal Precision of Auditory Attention. Nature Communications, 5, Article No. 5255. https://doi.org/10.1038/ncomms6255 |
[32] | Nani, A., Manuello, J., Liloia, D., Duca, S., Costa, T., & Cauda, F. (2019). The Neural Correlates of Time: A Meta-Analysis of Neuroimaging Studies. Journal of Cognitive Neuroscience, 31, 1796-1826. https://doi.org/10.1162/jocn_a_01459 |
[33] | Novembre, G., & Keller, P. E. (2014). A Conceptual Review on Action-Perception Coupling in the Musicians’ Brain: What Is It Good For? Frontiers in Human Neuroscience, 8, Article 603. https://doi.org/10.3389/fnhum.2014.00603 |
[34] | Phillips-Silver, J., & Trainor, L. J. (2005). Feeling the Beat: Movement Influences Infant Rhythm Perception. Science, 308, 1430-1430. https://doi.org/10.1126/science.1110922 |
[35] | Phillips-Silver, J., & Trainor, L. J. (2007). Hearing What the Body Feels: Auditory Encoding of Rhythmic Movement. Cognition, 105, 533-546. https://doi.org/10.1016/j.cognition.2006.11.006 |
[36] | Press, C., Berlot, E., Bird, G., Ivry, R., & Cook, R. (2014). Moving Time: The Influence of Action on Duration Perception.. Journal of Experimental Psychology: General, 143, 1787-1793. https://doi.org/10.1037/a0037650 |
[37] | Prinz, W. (1997). Perception and Action Planning. European Journal of Cognitive Psychology, 9, 129-154. https://doi.org/10.1080/713752551 |
[38] | Protopapa, F., Hayashi, M. J., Kulashekhar, S., van der Zwaag, W., Battistella, G., Murray, M. M. et al. (2019). Chronotopic Maps in Human Supplementary Motor Area. PLOS Biology, 17, e3000026. https://doi.org/10.1371/journal.pbio.3000026 |
[39] | Singh, A., Cole, R. C., Espinoza, A. I., Evans, A., Cao, S., Cavanagh, J. F. et al. (2021). Timing Variability and Midfrontal ~4 Hz Rhythms Correlate with Cognition in Parkinson’s Disease. NPJ Parkinson’s Disease, 7, Article No. 14. https://doi.org/10.1038/s41531-021-00158-x |
[40] | Su, Y., & P?ppel, E. (2011). Body Movement Enhances the Extraction of Temporal Structures in Auditory Sequences. Psychological Research, 76, 373-382. https://doi.org/10.1007/s00426-011-0346-3 |
[41] | Sugano, Y., Keetels, M., & Vroomen, J. (2014). Concurrent Sensorimotor Temporal Recalibration to Different Lags for the Left and Right Hand. Frontiers in Psychology, 5, Article 140. https://doi.org/10.3389/fpsyg.2014.00140 |
[42] | Suzuki, K., Lush, P., Seth, A. K., & Roseboom, W. (2019). Intentional Binding without Intentional Action. Psychological Science, 30, 842-853. https://doi.org/10.1177/0956797619842191 |
[43] | Terao, M., Watanabe, J., Yagi, A., & Nishida, S. (2008). Reduction of Stimulus Visibility Compresses Apparent Time Intervals. Nature Neuroscience, 11, 541-542. https://doi.org/10.1038/nn.2111 |
[44] | Tomassini, A., & Morrone, M. C. (2016). Perceived Visual Time Depends on Motor Preparation and Direction of Hand Movements. Scientific Reports, 6, Article No. 27947. https://doi.org/10.1038/srep27947 |
[45] | Tomassini, A., Gori, M., Baud-Bovy, G., Sandini, G., & Morrone, M. C. (2014). Motor Commands Induce Time Compression for Tactile Stimuli. Journal of Neuroscience, 34, 9164-9172. https://doi.org/10.1523/jneurosci.2782-13.2014 |
[46] | Wenke, D., & Haggard, P. (2009). How Voluntary Actions Modulate Time Perception. Experimental Brain Research, 196, 311-318. https://doi.org/10.1007/s00221-009-1848-8 |
[47] | Wiener, M., Zhou, W., Bader, F., & Joiner, W. M. (2019). Movement Improves the Quality of Temporal Perception and Decision-Making. eNeuro, 6, ENEURO.0042-19.2019. https://doi.org/10.1523/eneuro.0042-19.2019 |
[48] | Yabe, Y., & Goodale, M. A. (2015). Time Flies When We Intend to Act: Temporal Distortion in a Go/No-Go Task. The Journal of Neuroscience, 35, 5023-5029. https://doi.org/10.1523/jneurosci.4386-14.2015 |
[49] | Yamamoto, K. (2020). Cue Integration as a Common Mechanism for Action and Outcome Bindings. Cognition, 205, Article ID: 104423. https://doi.org/10.1016/j.cognition.2020.104423 |
[50] | Yang, S. C., Wolpert, D. M., & Lengyel, M. (2016). Theoretical Perspectives on Active Sensing. Current Opinion in Behavioral Sciences, 11, 100-108. https://doi.org/10.1016/j.cobeha.2016.06.009 |
[51] | Yarrow, K., Haggard, P., Heal, R., Brown, P., & Rothwell, J. C. (2001). Illusory Perceptions of Space and Time Preserve Cross-Saccadic Perceptual Continuity. Nature, 414, 302-305. https://doi.org/10.1038/35104551 |
[52] | Yokosaka, T., Kuroki, S., Nishida, S., & Watanabe, J. (2015). Apparent Time Interval of Visual Stimuli Is Compressed during Fast Hand Movement. PLOS ONE, 10, e0124901. https://doi.org/10.1371/journal.pone.0124901 |
[53] | Yon, D., Edey, R., Ivry, R. B., & Press, C. (2017). Time on Your Hands: Perceived Duration of Sensory Events Is Biased toward Concurrent Actions. Journal of Experimental Psychology: General, 146, 182-193. https://doi.org/10.1037/xge0000254 |
[54] | Zalta, A., Petkoski, S., & Morillon, B. (2020). Natural Rhythms of Periodic Temporal Attention. Nature Communications, 11, Article No. 1051. https://doi.org/10.1038/s41467-020-14888-8 |
[55] | Zhou, L., Xing, L., Zheng, C., & Li, S. (2024). Moving Stimuli Enhance Beat Timing and Sensorimotor Coupling in Vision. Journal of Experimental Psychology: Human Perception and Performance, 50, 416-429. https://doi.org/10.1037/xhp0001193 |