全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2023污染生态学与绿色低碳发展——基于STIRPAT模型的中国碳排放峰值预测与驱动因素分析
Research on Carbon Emission Peak Prediction in China—Based on STIRPAT Model and Driving Factor Decomposition Analysis

DOI: 10.12677/aam.2024.137330, PP. 3442-3455

Keywords: 碳排放,峰值预测,驱动因素,STIRPAT模型,LMDI分解方法
Carbon Emission
, Carbon Peak Prediction, Driving Factor Analysis, STIRPAT Model, LMDI Decomposition Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

中国是碳排放大国,其碳达峰和碳中和实现对全球碳减排至关重要。中国未来碳排放如何变化,其关键驱动因素是什么,一直是人们关注的焦点。本研究通过构建拓展的STIRPAT模型,基于2000~2020年碳排放数据,开展我国未来碳排放变化模拟研究。结合LMDI分解方法,从人口规模、人均GDP、第二产业占比、城镇化率、煤炭消费量占比和能源强度角度阐明我国碳排放变化的驱动因素。研究结果表明,STIRPAT模型能较好模拟我国碳排放量。人口规模,人均GDP和城镇化率是促进我国碳排放的主要驱动因素,平均贡献率分别达30.16%,34.85%和36.02%。通过STIRPAT模型模拟可发现基准情景、绿色发展情景和经济增速放缓情景在2030年前均能实现碳达峰,且绿色发展情景是我国实现碳达峰的最优路径。此情景下,我国在不降低经济增速的前提下,需要积极调整能源结构和产业结构,提高能源利用效率,加大碳减排政策的实施力度,可确保2030年前实现碳达峰目标,碳排放峰值为115.86亿吨。研究成果可为我国碳减排目标实现路径和相应政策制订提供参考依据。
China is a major carbon emission country, and its realization of carbon peak and carbon neutralization is crucial to global carbon emission reduction. How China’s carbon emissions will change in the future and what are the key drivers have always been the focus of attention. Based on the carbon emission data from 2000 to 2020, we simulate China’s future carbon emission changes through STIRPAT model. Combined with LMDI decomposition method, the driving factors of China’s carbon emission change are clarified from the perspective of population, per capita GDP, the proportion of secondary industry, urbanization rate, the proportion of coal consumption and energy intensity. The results show that STIRPAT model can accurately simulate China’s carbon emissions. Population, per capita GDP and urbanization rate are the main factors that promote China’s carbon emissions, with contribution rates of 30.16%, 34.85% and 36.02% respectively. Through STIRPAT model simulation, we found that carbon emission under the benchmark scenario, green development scenario and low economic growth scenario can achieve carbon peak before 2030, among which the green development scenario is the best path for China to achieve carbon peak goal. Under the green development scenario, the peak carbon emission would be 11.586 billion tons. It needs to actively adjust the energy structure and industrial structure, improve energy efficiency, and strengthen the implementation of carbon emission reduction policies to ensure carbon peak before 2030 without restricting economic development. Our study can provide a reference for the realization path of China’s carbon emission reduction goals and the corresponding policy-making.

References

[1]  Wang, L., Zhao, L., Mao, G., Zuo, J. and Du, H. (2017) Way to Accomplish Low Carbon Development Transformation: A Bibliometric Analysis during 1995-2014. Renewable and Sustainable Energy Reviews, 68, 57-69.
https://doi.org/10.1016/j.rser.2016.08.021
[2]  闫新杰, 孙慧.基于STIRPAT模型的新疆“碳达峰”预测与实现路径研究[J]. 新疆大学学报, 2022, 39(2): 206-212, 218.
[3]  潘高, 张合平, 潘登. 湖南省2000-2014年碳排放效应及时空格局[J]. 生态学杂志, 2017, 36(5): 1382-1389.
[4]  王玉超, 徐璇, 曹鹏鹤, 等. 溪流二氧化碳排放研究进展[J]. 生态学杂志, 2022, 41(1): 182-189.
[5]  Zhou, W., Wang, T., Yu, Y., Chen, D. and Zhu, B. (2016) Scenario Analysis of CO2 Emissions from China’s Civil Aviation Industry through 2030. Applied Energy, 175, 100-108.
https://doi.org/10.1016/j.apenergy.2016.05.004
[6]  Abbasi, K.R., Adedoyin, F.F., Abbas, J. and Hussain, K. (2021) The Impact of Energy Depletion and Renewable Energy on CO2 Emissions in Thailand: Fresh Evidence from the Novel Dynamic ARDL Simulation. Renewable Energy, 180, 1439-1450.
https://doi.org/10.1016/j.renene.2021.08.078
[7]  Chen, L., Yang, Z. and Chen, B. (2013) Scenario Analysis and Path Selection of Low-Carbon Transformation in China Based on a Modified IPAT Model. PLOS ONE, 8, e77699.
https://doi.org/10.1371/journal.pone.0077699
[8]  张巍. 基于Kaya恒等式的西安市碳足迹影响因素分析[J]. 环境科学导刊, 2020, 39(6): 40-45.
[9]  王长建, 汪菲, 张虹鸥. 新疆能源消费碳排放过程及其影响因素——基于扩展的Kaya恒等式[J]. 生态学报, 2016, 36(8): 2151-2163.
[10]  Wang, M. and Feng, C. (2017) Decomposition of Energy-Related CO2 Emissions in China: An Empirical Analysis Based on Provincial Panel Data of Three Sectors. Applied Energy, 190, 772-787.
https://doi.org/10.1016/j.apenergy.2017.01.007
[11]  Ang, B.W. (2015) LMDI Decomposition Approach: A Guide for Implementation. Energy Policy, 86, 233-238.
https://doi.org/10.1016/j.enpol.2015.07.007
[12]  Yang, B., Usman, M. and Jahanger, A. (2021) Do Industrialization, Economic Growth and Globalization Processes Influence the Ecological Footprint and Healthcare Expenditures? Fresh Insights Based on the STIRPAT Model for Countries with the Highest Healthcare Expenditures. Sustainable Production and Consumption, 28, 893-910.
https://doi.org/10.1016/j.spc.2021.07.020
[13]  Emodi, N.V., Emodi, C.C., Murthy, G.P. and Emodi, A.S.A. (2017) Energy Policy for Low Carbon Development in Nigeria: A LEAP Model Application. Renewable and Sustainable Energy Reviews, 68, 247-261.
https://doi.org/10.1016/j.rser.2016.09.118
[14]  Ren, F. and Long, D. (2021) Carbon Emission Forecasting and Scenario Analysis in Guangdong Province Based on Optimized Fast Learning Network. Journal of Cleaner Production, 317, Article ID: 128408.
https://doi.org/10.1016/j.jclepro.2021.128408
[15]  Xu, B., Luo, L. and Lin, B. (2016) A Dynamic Analysis of Air Pollution Emissions in China: Evidence from Nonparametric Additive Regression Models. Ecological Indicators, 63, 346-358.
https://doi.org/10.1016/j.ecolind.2015.11.012
[16]  Ji, X. and Chen, B. (2017) Assessing the Energy-Saving Effect of Urbanization in China Based on Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT) Model. Journal of Cleaner Production, 163, S306-S314.
https://doi.org/10.1016/j.jclepro.2015.12.002
[17]  Dietz, T. and Rosa, E.A. (1997) Effects of Population and Affluence on CO2 Emissions. Proceedings of the National Academy of Sciences, 94, 175-179.
https://doi.org/10.1073/pnas.94.1.175
[18]  Su, K. and Lee, C. (2020) When Will China Achieve Its Carbon Emission Peak? A Scenario Analysis Based on Optimal Control and the STIRPAT Model. Ecological Indicators, 112, Article ID: 106138.
https://doi.org/10.1016/j.ecolind.2020.106138
[19]  Wu, R., Wang, J., Wang, S. and Feng, K. (2021) The Drivers of Declining CO2 Emissions Trends in Developed Nations Using an Extended STIRPAT Model: A Historical and Prospective Analysis. Renewable and Sustainable Energy Reviews, 149, Article ID: 111328.
https://doi.org/10.1016/j.rser.2021.111328
[20]  Anser, M.K. (2019) Impact of Energy Consumption and Human Activities on Carbon Emissions in Pakistan: Application of STIRPAT Model. Environmental Science and Pollution Research, 26, 13453-13463.
https://doi.org/10.1007/s11356-019-04859-y
[21]  De Boer, P. (2008) Additive Structural Decomposition Analysis and Index Number Theory: An Empirical Application of the Montgomery Decomposition. Economic Systems Research, 20, 97-109.
https://doi.org/10.1080/09535310801892066
[22]  Yang, J., Cai, W., Ma, M., Li, L., Liu, C., Ma, X., et al. (2020) Driving Forces of China’s CO2 Emissions from Energy Consumption Based on Kaya-LMDI Methods. Science of the Total Environment, 711, Article ID: 134569.
https://doi.org/10.1016/j.scitotenv.2019.134569
[23]  Yang, X., Li, N., Mu, H., Pang, J., Zhao, H. and Ahmad, M. (2021) Study on the Long-Term Impact of Economic Globalization and Population Aging on CO2 Emissions in OECD Countries. Science of the Total Environment, 787, Article ID: 147625.
https://doi.org/10.1016/j.scitotenv.2021.147625
[24]  Shahbaz, M., Loganathan, N., Muzaffar, A.T., Ahmed, K. and Ali Jabran, M. (2016) How Urbanization Affects CO2 Emissions in Malaysia? The Application of STIRPAT Model. Renewable and Sustainable Energy Reviews, 57, 83-93.
https://doi.org/10.1016/j.rser.2015.12.096
[25]  Rehman, A., Ma, H., Ozturk, I. and Ulucak, R. (2021) Sustainable Development and Pollution: The Effects of CO2 Emission on Population Growth, Food Production, Economic Development, and Energy Consumption in Pakistan. Environmental Science and Pollution Research, 29, 17319-17330.
https://doi.org/10.1007/s11356-021-16998-2
[26]  Wang, S., Li, Q., Fang, C. and Zhou, C. (2016) The Relationship between Economic Growth, Energy Consumption, and CO2 Emissions: Empirical Evidence from China. Science of the Total Environment, 542, 360-371.
https://doi.org/10.1016/j.scitotenv.2015.10.027
[27]  陶涛, 朱家明. 全面二孩政策对中国人口结构及经济发展的影响及预测[J]. 哈尔滨师范大学自然科学学报, 2018, 34(3): 28-32.
[28]  黄礼健. 中美贸易战升级的原因、影响及趋势分析[J]. 新金融, 2018(9): 20-24.
[29]  郭克莎. 中国产业结构调整升级趋势与“十四五”时期政策思路[J]. 中国工业经济, 2019(7): 24-41.
[30]  高春亮, 魏后凯. 中国城镇化趋势预测研究[J]. 当代经济科学, 2013, 35(4): 85-90.
[31]  姜大霖, 程浩. 中长期中国煤炭消费预测和展望[J]. 煤炭经济研究, 2020, 40(7): 16-21.
[32]  王锋, 吴丽华, 杨超. 中国经济发展中碳排放增长的驱动因素研究[J]. 经济研究, 2010, 45(2): 123-136.
[33]  国家统计局. 2021年中国统计年鉴[M]. 北京: 中国统计出版社, 2021.
[34]  国家能源局. 2021年中国能源统计年鉴[M]. 北京: 中国统计出版社, 2021.
[35]  张巍. 基于STIRPAT模型的西安市碳足迹预测和情景分析[J]. 生态经济, 2021, 37(4): 25-29.
[36]  王长建, 张虹鸥, 叶玉瑶, 等. 广东省能源消费碳排放的多变量驱动因素——基于扩展的STIRPAT模型[J]. 科技管理研究, 2017, 37(3): 210-214.
[37]  Yang, Y., Zhou, Y., Poon, J. and He, Z. (2019) China’s Carbon Dioxide Emission and Driving Factors: A Spatial Analysis. Journal of Cleaner Production, 211, 640-651.
https://doi.org/10.1016/j.jclepro.2018.11.185
[38]  杨顺顺. 中国碳排放轨迹特征、驱动因素及减排策略[J]. 环境科学与技术, 2020, 43(1): 98-104.
[39]  Liu, W., Jiang, W., Tang, Z. and Han, M. (2022) Pathways to Peak Carbon Emissions in China by 2030: An Analysis in Relation to the Economic Growth Rate. Science China Earth Sciences, 65, 1057-1072.
https://doi.org/10.1007/s11430-021-9901-y
[40]  Xu, G., Schwarz, P. and Yang, H. (2020) Adjusting Energy Consumption Structure to Achieve China’s CO2 Emissions Peak. Renewable and Sustainable Energy Reviews, 122, Article ID: 109737.
https://doi.org/10.1016/j.rser.2020.109737
[41]  Ding, S., Zhang, M. and Song, Y. (2019) Exploring China’s Carbon Emissions Peak for Different Carbon Tax Scenarios. Energy Policy, 129, 1245-1252.
https://doi.org/10.1016/j.enpol.2019.03.037
[42]  Li, H. and Qin, Q. (2019) Challenges for China’s Carbon Emissions Peaking in 2030: A Decomposition and Decoupling Analysis. Journal of Cleaner Production, 207, 857-865.
https://doi.org/10.1016/j.jclepro.2018.10.043

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133