全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

γδT细胞在自身免疫性疾病发生发展中的参与和作用
Participation and Role of γδT Cells in the Occurrence and Development of Autoimmune Diseases

DOI: 10.12677/pi.2024.134042, PP. 362-368

Keywords: γδT细胞,自身免疫性疾病,类风湿性关节炎,银屑病,多发性硬化症
γδT Cells
, Autoimmune Diseases, Rheumatoid Arthritis, Psoriasis, Multiple Sclerosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

自身免疫性疾病作为一种系统性慢性疾病,其发病机制涉及多种细胞(如T细胞、B细胞、巨噬细胞等)及其相互作用。γδT细胞是一种独特的T淋巴细胞亚群,连接先天性和适应性免疫应答,参与多种生理和病理过程。近年来的研究表明,γδT细胞与多种自身免疫性疾病的发生发展相关。本文对其研究概况进行综述,为阐明自身免疫性疾病的病机及相关药物研发提供参考。
As a systemic chronic disease, the pathogenesis of autoimmune diseases involves various cells (such as T cells, B cells, macrophages, etc.) and their interaction. γδT cells are a unique subset of T lymphocytes bridging innate and adaptive immune responses, participating in various physiological and pathological processes. In recent years, numerous studies have indicated the association of γδT cells with the onset and progression of several autoimmune diseases. This review summarizes the involvement and roles of γδT cells in the occurrence and development of autoimmune diseases.

References

[1]  Brenner, M.B., McLean, J., Dialynas, D.P., Strominger, J.L., Smith, J.A., Owen, F.L., et al. (1986) Identification of a Putative Second T-Cell Receptor. Nature, 322, 145-149.
https://doi.org/10.1038/322145a0
[2]  Bettin, L., Darbellay, J., van Kessel, J., Scruten, E., Napper, S. and Gerdts, V. (2023) Distinct, Age-Dependent TLR7/8 Signaling Responses in Porcine Gamma-Delta T Cells. Molecular Immunology, 160, 80-94.
https://doi.org/10.1016/j.molimm.2023.06.012
[3]  Abou-El-Hassan, H., Rezende, R.M., Izzy, S., Gabriely, G., Yahya, T., Tatematsu, B.K., et al. (2023) Vγ1 and Vγ4 Gamma-Delta T Cells Play Opposing Roles in the Immunopathology of Traumatic Brain Injury in Males. Nature Communications, 14, Article No. 4286.
https://doi.org/10.1038/s41467-023-39857-9
[4]  Wang, C.Q., Lim, P.Y. and Tan, A.H. (2024) Gamma/Delta T Cells as Cellular Vehicles for Anti-Tumor Immunity. Frontiers in Immunology, 14, Article 1282758.
https://doi.org/10.3389/fimmu.2023.1282758
[5]  Costa, G.P., Mensurado, S. and Silva-Santos, B. (2023) Therapeutic Avenues for γδ T Cells in Cancer. Journal for ImmunoTherapy of Cancer, 11, e007955.
https://doi.org/10.1136/jitc-2023-007955
[6]  Li, J., Cao, Y., Liu, Y., Yu, L., Zhang, Z., Wang, X., et al. (2024) Multiomics Profiling Reveals the Benefits of Gamma-Delta (γδ) T Lymphocytes for Improving the Tumor Microenvironment, Immunotherapy Efficacy and Prognosis in Cervical Cancer. Journal for ImmunoTherapy of Cancer, 12, e008355.
https://doi.org/10.1136/jitc-2023-008355
[7]  Rao, A., Agrawal, A., Borthakur, G., Battula, V.L. and Maiti, A. (2024) Gamma Delta T Cells in Acute Myeloid Leukemia: Biology and Emerging Therapeutic Strategies. Journal for ImmunoTherapy of Cancer, 12, e007981.
https://doi.org/10.1136/jitc-2023-007981
[8]  Paul, S., Shilpi, and Lal, G. (2014) Role of Gamma-Delta (γδ) T Cells in Autoimmunity. Journal of Leukocyte Biology, 97, 259-271.
https://doi.org/10.1189/jlb.3ru0914-443r
[9]  Pisetsky, D.S. (2023) Pathogenesis of Autoimmune Disease. Nature Reviews Nephrology, 19, 509-524.
https://doi.org/10.1038/s41581-023-00720-1
[10]  Lichtiger, A., Fadaei, G. and Tagoe, C.E. (2024) Autoimmune Thyroid Disease and Rheumatoid Arthritis: Where the Twain Meet. Clinical Rheumatology, 43, 895-905.
https://doi.org/10.1007/s10067-024-06888-6
[11]  Di Matteo, A., Bathon, J.M. and Emery, P. (2023) Rheumatoid Arthritis. The Lancet, 402, 2019-2033.
https://doi.org/10.1016/s0140-6736(23)01525-8
[12]  Jang, S., Kwon, E. and Lee, J.J. (2022) Rheumatoid Arthritis: Pathogenic Roles of Diverse Immune Cells. International Journal of Molecular Sciences, 23, Article 905.
https://doi.org/10.3390/ijms23020905
[13]  Buchanan, W.W., Kean, C.A., Kean, W.F. and Rainsford, K.D. (2023) Rheumatoid Arthritis. Inflammopharmacology, 32, 3-11.
https://doi.org/10.1007/s10787-023-01221-0
[14]  Bank, I. (2020) The Role of Gamma Delta T Cells in Autoimmune Rheumatic Diseases. Cells, 9, Article 462.
https://doi.org/10.3390/cells9020462
[15]  Zhu, T., Zhu, L., Sheng, C., Wu, D., Gu, Q., Jiang, Z., et al. (2024) Hyperactivation and Enhanced Cytotoxicity of Reduced CD8+ Gamma Delta T Cells in the Intestine of Patients with Crohn’s Disease Correlates with Disease Activity. BMC Immunology, 25, Article No. 15.
https://doi.org/10.1186/s12865-024-00606-2
[16]  Roark, C.L., French, J.D., Taylor, M.A., Bendele, A.M., Born, W.K. and O’Brien, R.L. (2007) Exacerbation of Collagen-Induced Arthritis by Oligoclonal, Il-17-Producing γδ T Cells. The Journal of Immunology, 179, 5576-5583.
https://doi.org/10.4049/jimmunol.179.8.5576
[17]  Ito, Y., Usui, T., Kobayashi, S., Iguchi‐Hashimoto, M., Ito, H., Yoshitomi, H., et al. (2009) Gamma/Delta T Cells Are the Predominant Source of Interleukin‐17 in Affected Joints in Collagen‐induced Arthritis, but Not in Rheumatoid Arthritis. Arthritis & Rheumatism, 60, 2294-2303.
https://doi.org/10.1002/art.24687
[18]  Peterman, G.M., Spencer, C., Sperling, A.I. and Bluestone, J.A. (1993) Role of Gamma Delta T Cells in Murine Collagen-Induced Arthritis. The Journal of Immunology, 151, 6546-6558.
https://doi.org/10.4049/jimmunol.151.11.6546
[19]  Jakimovski, D., Bittner, S., Zivadinov, R., Morrow, S.A., Benedict, R.H., Zipp, F., et al. (2024) Multiple Sclerosis. The Lancet, 403, 183-202.
https://doi.org/10.1016/s0140-6736(23)01473-3
[20]  Zarobkiewicz, M.K., Kowalska, W., Roliński, J. and Bojarska-Junak, A.A. (2019) γδ T Lymphocytes in the Pathogenesis of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Journal of Neuroimmunology, 330, 67-73.
https://doi.org/10.1016/j.jneuroim.2019.02.009
[21]  Maimaitijiang, G., Shinoda, K., Nakamura, Y., Masaki, K., Matsushita, T., Isobe, N., et al. (2018) Association of Decreased Percentage of Vδ2+Vγ9+ γδ T Cells with Disease Severity in Multiple Sclerosis. Frontiers in Immunology, 9, Article 748.
https://doi.org/10.3389/fimmu.2018.00748
[22]  Freedman, M.S., D’Souza, S. and Antel, J.P. (1997) γδ T-Cell-Human Glial Cell Interactions. I. in vitro Induction of γδ T-Cell Expansion by Human Glial Cells. Journal of Neuroimmunology, 74, 135-142.
https://doi.org/10.1016/s0165-5728(96)00217-2
[23]  Wohler, J.E., Smith, S.S. and Barnum, S.R. (2009) γδ T Cells: The Overlooked T‐Cell Subset in Demyelinating Disease. Journal of Neuroscience Research, 88, 1-6.
https://doi.org/10.1002/jnr.22176
[24]  Malik, S., Want, M.Y. and Awasthi, A. (2016) The Emerging Roles of Gamma-Delta T Cells in Tissue Inflammation in Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 7, Article 14.
https://doi.org/10.3389/fimmu.2016.00014
[25]  Odyniec, A., Szczepanik, M., Mycko, M.P., Stasiolek, M., Raine, C.S. and Selmaj, K.W. (2004) γδ T Cells Enhance the Expression of Experimental Autoimmune Encephalomyelitis by Promoting Antigen Presentation and IL-12 Production. The Journal of Immunology, 173, 682-694.
https://doi.org/10.4049/jimmunol.173.1.682
[26]  Blink, S.E., Caldis, M.W., Goings, G.E., Harp, C.T., Malissen, B., Prinz, I., et al. (2014) γδ T Cell Subsets Play Opposing Roles in Regulating Experimental Autoimmune Encephalomyelitis. Cellular Immunology, 290, 39-51.
https://doi.org/10.1016/j.cellimm.2014.04.013
[27]  Kobayashi, Y., Kawai, K., Ito, K., Honda, H., Sobue, G. and Yoshikai, Y. (1997) Aggravation of Murine Experimental Allergic Encephalomyelitis by Administration of T-Cell Receptor γδ-Specific Antibody. Journal of Neuroimmunology, 73, 169-174.
https://doi.org/10.1016/s0165-5728(96)00187-7
[28]  Gordon, H., Burisch, J., Ellul, P., Karmiris, K., Katsanos, K., Allocca, M., et al. (2023) ECCO Guidelines on Extraintestinal Manifestations in Inflammatory Bowel Disease. Journal of Crohn’s and Colitis, 18, 1-37.
https://doi.org/10.1093/ecco-jcc/jjad108
[29]  Dart, R.J., Zlatareva, I., Vantourout, P., Theodoridis, E., Amar, A., Kannambath, S., et al. (2023) Conserved γδ T Cell Selection by BTNL Proteins Limits Progression of Human Inflammatory Bowel Disease. Science, 381, eadh0301.
https://doi.org/10.1126/science.adh0301
[30]  McVay, L.D., Li, B., Biancaniello, R., Creighton, M.A., Bachwich, D., Lichtenstein, G., et al. (1997) Changes in Human Mucosal γδ T Cell Repertoire and Function Associated with the Disease Process in Inflammatory Bowel Disease. Molecular Medicine, 3, 183-203.
https://doi.org/10.1007/bf03401672
[31]  Catalan-Serra, I., Sandvik, A.K., Bruland, T. and Andreu-Ballester, J.C. (2017) Gammadelta T Cells in Crohn’s Disease: A New Player in the Disease Pathogenesis? Journal of Crohn’s and Colitis, 11, 1135-1145.
https://doi.org/10.1093/ecco-jcc/jjx039
[32]  Kadivar, M., Petersson, J., Svensson, L. and Marsal, J. (2016) CD8αβ+ γδ T Cells: A Novel T Cell Subset with a Potential Role in Inflammatory Bowel Disease. The Journal of Immunology, 197, 4584-4592.
https://doi.org/10.4049/jimmunol.1601146
[33]  Hoffmann, J.C. (2001) Role of T Lymphocytes in Rat 2,4,6-Trinitrobenzene Sulphonic Acid (TNBS) Induced Colitis: Increased Mortality after γδ T Cell Depletion and No Effect of αβ T Cell Depletion. Gut, 48, 489-495.
https://doi.org/10.1136/gut.48.4.489
[34]  Sun, X., Cai, Y., Fleming, C., Tong, Z., Wang, Z., Ding, C., et al. (2017) Innate γδT17 Cells Play a Protective Role in DSS-Induced Colitis via Recruitment of Gr-1+CD11b+ Myeloid Suppressor Cells. OncoImmunology, 6, e1313369.
https://doi.org/10.1080/2162402x.2017.1313369
[35]  Tampa, M., Mitran, M.I., Mitran, C.I., Matei, C. and Georgescu, S.R. (2024) Psoriasis: What Is New in Markers of Disease Severity? Medicina, 60, Article 337.
https://doi.org/10.3390/medicina60020337
[36]  Hawkes, J.E., Yan, B.Y., Chan, T.C. and Krueger, J.G. (2018) Discovery of the IL-23/IL-17 Signaling Pathway and the Treatment of Psoriasis. The Journal of Immunology, 201, 1605-1613.
https://doi.org/10.4049/jimmunol.1800013
[37]  Ogawa, E., Sato, Y., Minagawa, A. and Okuyama, R. (2017) Pathogenesis of Psoriasis and Development of Treatment. The Journal of Dermatology, 45, 264-272.
https://doi.org/10.1111/1346-8138.14139
[38]  Zhou, J., Zhang, J., Tao, L., Peng, K., Zhang, Q., Yan, K., et al. (2022) Up-Regulation of BTN3A1 on CD14+ Cells Promotes Vγ9vδ2 T Cell Activation in Psoriasis. Proceedings of the National Academy of Sciences, 119, e2117523119.
https://doi.org/10.1073/pnas.2117523119
[39]  Laggner, U., Di Meglio, P., Perera, G.K., Hundhausen, C., Lacy, K.E., Ali, N., et al. (2011) Identification of a Novel Proinflammatory Human Skin-Homing Vγ9Vδ2 T Cell Subset with a Potential Role in Psoriasis. The Journal of Immunology, 187, 2783-2793.
https://doi.org/10.4049/jimmunol.1100804
[40]  Pantelyushin, S., Haak, S., Ingold, B., Kulig, P., Heppner, F.L., Navarini, A.A., et al. (2012) Rorγt+ Innate Lymphocytes and γδ T Cells Initiate Psoriasiform Plaque Formation in Mice. Journal of Clinical Investigation, 122, 2252-2256.
https://doi.org/10.1172/jci61862
[41]  Mabuchi, T., Takekoshi, T. and Hwang, S.T. (2011) Epidermal CCR6+ γδ T Cells Are Major Producers of IL-22 and IL-17 in a Murine Model of Psoriasiform Dermatitis. The Journal of Immunology, 187, 5026-5031.
https://doi.org/10.4049/jimmunol.1101817
[42]  Zhang, S., Zhang, J., Yu, J., Chen, X., Zhang, F., Wei, W., et al. (2021) Hyperforin Ameliorates Imiquimod-Induced Psoriasis-Like Murine Skin Inflammation by Modulating IL-17A-Producing γδ T Cells. Frontiers in Immunology, 12, Article 635076.
https://doi.org/10.3389/fimmu.2021.635076
[43]  Li, M., Cheng, H., Tian, D., Yang, L., Du, X., Pan, Y., et al. (2022) D-Mannose Suppresses γδ T Cells and Alleviates Murine Psoriasis. Frontiers in Immunology, 13, Article 840755.
https://doi.org/10.3389/fimmu.2022.840755
[44]  Siegel, C.H. and Sammaritano, L.R. (2024) Systemic Lupus Erythematosus. JAMA, 331, 1480-1491.
https://doi.org/10.1001/jama.2024.2315
[45]  Koga, T., Endo, Y., Umeda, M., Sato, T., Mizunoo, Y., Furukawa, K., et al. (2020) Reduction in the Percentage of Circulating Variable Delta 2 T Cells in Systemic Lupus Erythematosus. Clinical Immunology, 220, Article 108577.
https://doi.org/10.1016/j.clim.2020.108577
[46]  Lu, Z., Su, D., Wang, D., Li, X., Feng, X. and Sun, L. (2013) Elevated Apoptosis and Impaired Proliferation Contribute to Downregulated Peripheral γδ T Cells in Patients with Systemic Lupus Erythematosus. Clinical and Developmental Immunology, 2013, Article 405395.
https://doi.org/10.1155/2013/405395
[47]  Wang, L., Kang, N., Zhou, J., Guo, Y., Zhang, X., Cui, L., et al. (2012) Downregulation of CD94/NKG2A Inhibitory Receptor on Decreased γδ T Cells in Patients with Systemic Lupus Erythematosus. Scandinavian Journal of Immunology, 76, 62-69.
https://doi.org/10.1111/j.1365-3083.2012.02705.x
[48]  Balint, G., Watson Buchanan, W., Kean, C.A., Kean, W. and Rainsford, K.D. (2023) Sj?gren’s Syndrome. Inflammopharmacology, 32, 37-43.
https://doi.org/10.1007/s10787-023-01222-z
[49]  Gerli, R., Agea, E., Muscat, C., et al. (1993) Functional Characterization of T Cells Bearing the Gamma/Delta T-Cell Receptor in Patients with Primary Sj?gren’s Syndrome. Clinical and Experimental Rheumatology, 11, 295-299.
[50]  Lamour, A., Smith, M.D., Lydyard, P.M. and Youinou, P.Y. (1995) The Majority of FcγRIII-Positive γδT Cells Do Not Express HLA-DR in Patients with Primary Sj?gren’s Syndrome. Immunology Letters, 45, 153-155.
https://doi.org/10.1016/0165-2478(94)00252-m
[51]  Alonzo, E.S., Gottschalk, R.A., Das, J., Egawa, T., Hobbs, R.M., Pandolfi, P.P., et al. (2009) Development of Promyelocytic Zinc Finger and ThPOK-Expressing Innate γδ T Cells Is Controlled by Strength of TCR Signaling and Id3. The Journal of Immunology, 184, 1268-1279.
https://doi.org/10.4049/jimmunol.0903218

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133