|
Pharmacy Information 2024
血管活性肽在自身免疫性疾病发生发展中的参与及作用
|
Abstract:
血管活性肠肽(vasoactive intestinal peptide, VIP)是一种主要存在于中枢神经系统和肠道神经系统的神经递质,在肠道神经系统主要由肠神经元释放,既是一种胃肠激素,又是一种具有多种功能的神经肽。VIP对多种自身免疫性疾病具有治疗潜力,包括类风湿性关节炎、炎症性肠病和干燥综合征等。本文总结VIP在多种自身免疫性疾病发生发展中的参与及作用,为上述疾病的治疗提供新思路。
Vasoactive intestinal peptide (VIP) is a neurotransmitter primarily found in the central nervous system and the enteric nervous system. In the enteric nervous system, it is predominantly released by enteric neurons. It serves as both a gastrointestinal hormone and a neuropeptide with various functions. VIP holds therapeutic potential for several autoimmune diseases, including rheumatoid arthritis, inflammatory bowel disease, and Sj?gren’s syndrome. This article summarizes the involvement and effects of VIP in the occurrence and development of multiple autoimmune diseases, providing new insights for the treatment of the aforementioned conditions.
[1] | Simon, R.A., Barazanji, N., Jones, M.P., Bednarska, O., Icenhour, A., Engstr?m, M., et al. (2021) Vasoactive Intestinal Polypeptide Plasma Levels Associated with Affective Symptoms and Brain Structure and Function in Healthy Females. Scientific Reports, 11, Article No. 1406. https://doi.org/10.1038/s41598-020-80873-2 |
[2] | Myers-Joseph, D., Wilmes, K.A., Fernandez-Otero, M., Clopath, C. and Khan, A.G. (2024) Disinhibition by VIP Interneurons Is Orthogonal to Cross-Modal Attentional Modulation in Primary Visual Cortex. Neuron, 112, 628-645.E7. https://doi.org/10.1016/j.neuron.2023.11.006 |
[3] | Paran, D., Elkayam, O., Mayo, A., et al. (2001) A Pilot Study of a Long Acting Somatostatin Analogue for the Treatment of Refractory Rheumatoid Arthritis. Annals of the Rheumatic Diseases, 60, 888-891. |
[4] | Gonzalez-Rey, E., Varela, N., Sheibanie, A.F., Chorny, A., Ganea, D. and Delgado, M. (2006) Cortistatin, an Antiinflammatory Peptide with Therapeutic Action in Inflammatory Bowel Disease. Proceedings of the National Academy of Sciences of the United States of America, 103, 4228-4233. https://doi.org/10.1073/pnas.0508997103 |
[5] | Chandrasekharan, B., Nezami, B.G. and Srinivasan, S. (2013) Emerging Neuropeptide Targets in Inflammation: NPY and VIP. American Journal of Physiology-Gastrointestinal and Liver Physiology, 304, G949-G957. https://doi.org/10.1152/ajpgi.00493.2012 |
[6] | Huang, J., Fu, X., Chen, X., Li, Z., Huang, Y. and Liang, C. (2021) Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Frontiers in Immunology, 12, Article 686155. https://doi.org/10.3389/fimmu.2021.686155 |
[7] | Brown, P., Pratt, A.G. and Hyrich, K.L. (2024) Therapeutic Advances in Rheumatoid Arthritis. BMJ, 384, e070856. https://doi.org/10.1136/bmj-2022-070856 |
[8] | Martínez, C., Ortiz, A.M., Juarranz, Y., Lamana, A., Seoane, I.V., Leceta, J., et al. (2014) Serum Levels of Vasoactive Intestinal Peptide as a Prognostic Marker in Early Arthritis. PLOS ONE, 9, e85248. https://doi.org/10.1371/journal.pone.0085248 |
[9] | ?teigerová, M., ?íma, M. and Slana?, O. (2023) Pathogenesis of Collagen-Induced Arthritis: Role of Immune Cells with Associated Cytokines and Antibodies, Comparison with Rheumatoid Arthritis. Folia Biologica, 69, 41-49. https://doi.org/10.14712/fb2023069020041 |
[10] | Delgado, M., Abad, C., Martinez, C., Leceta, J. and Gomariz, R.P. (2001) Vasoactive Intestinal Peptide Prevents Experimental Arthritis by Downregulating Both Autoimmune and Inflammatory Components of the Disease. Nature Medicine, 7, 563-568. https://doi.org/10.1038/87887 |
[11] | Juarranz, Y., Abad, C., Martinez, C., et al. (2005) Protective Effect of Vasoactive Intestinal Peptide on Bone Destruction in the Collagen-Induced Arthritis Model of Rheumatoid Arthritis. Arthritis Research & Therapy, 7, R1034-R1045. |
[12] | Juarranz, M.G. (2004) Vasoactive Intestinal Peptide Modulates Proinflammatory Mediator Synthesis in Osteoarthritic and Rheumatoid Synovial Cells. Rheumatology, 43, 416-422. https://doi.org/10.1093/rheumatology/keh061 |
[13] | Gutiérrez-Ca?as, I., Juarranz, Y., Santiago, B., Martínez, C., Gomariz, R.P., Pablos, J.L., et al. (2008) Immunoregulatory Properties of Vasoactive Intestinal Peptide in Human T Cell Subsets: Implications for Rheumatoid Arthritis. Brain, Behavior, and Immunity, 22, 312-317. https://doi.org/10.1016/j.bbi.2007.09.007 |
[14] | Carrión, M., Pérez-García, S., Martínez, C., Juarranz, Y., Estrada-Capetillo, L., Puig-Kr?ger, A., et al. (2016) VIP Impairs Acquisition of the Macrophage Proinflammatory Polarization Profile. Journal of Leukocyte Biology, 100, 1385-1393. https://doi.org/10.1189/jlb.3a0116-032rr |
[15] | Muschter, D., Sch?fer, N., Stangl, H., Straub, R.H. and Gr?ssel, S. (2015) Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis. PLOS ONE, 10, e0139726. https://doi.org/10.1371/journal.pone.0139726 |
[16] | Gilliland, A., Chan, J.J., De Wolfe, T.J., Yang, H. and Vallance, B.A. (2024) Pathobionts in Inflammatory Bowel Disease: Origins, Underlying Mechanisms, and Implications for Clinical Care. Gastroenterology, 166, 44-58. https://doi.org/10.1053/j.gastro.2023.09.019 |
[17] | Kubota, Y., Petras, R.E., Ottaway, C.A., Tubbs, R.R., Farmer, R.G. and Fiocchi, C. (1992) Colonic Vasoactive Intestinal Peptide Nerves in Inflammatory Bowel Disease. Gastroenterology, 102, 1242-1251. https://doi.org/10.1016/0016-5085(92)90762-n |
[18] | Sun, X., Guo, C., Zhao, F., Zhu, J., Xu, Y., Liu, Z., et al. (2019) Vasoactive Intestinal Peptide Stabilizes Intestinal Immune Homeostasis through Maintaining Interleukin-10 Expression in Regulatory B Cells. Theranostics, 9, 2800-2811. https://doi.org/10.7150/thno.34414 |
[19] | Wu, X., Conlin, V.S., Morampudi, V., Ryz, N.R., Nasser, Y., Bhinder, G., et al. (2015) Vasoactive Intestinal Polypeptide Promotes Intestinal Barrier Homeostasis and Protection against Colitis in Mice. PLOS ONE, 10, e0125225. https://doi.org/10.1371/journal.pone.0125225 |
[20] | Abad, C., Martinez, C., Juarranz, M.G., Arranz, A., Leceta, J., Delgado, M., et al. (2003) Therapeutic Effects of Vasoactive Intestinal Peptide in the Trinitrobenzene Sulfonic Acid Mice Model of Crohn’s Disease. Gastroenterology, 124, 961-971. https://doi.org/10.1053/gast.2003.50141 |
[21] | Conlin, V.S., Wu, X., Nguyen, C., Dai, C., Vallance, B.A., Buchan, A.M.J., et al. (2009) Vasoactive Intestinal Peptide Ameliorates Intestinal Barrier Disruption Associated with Citrobacter rodentium-Induced Colitis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 297, G735-G750. https://doi.org/10.1152/ajpgi.90551.2008 |
[22] | Villanueva-Romero, R., Gutiérrez-Ca?as, I., Carrión, M., Pérez-García, S., Seoane, I.V., Martínez, C., et al. (2018) The Anti-Inflammatory Mediator, Vasoactive Intestinal Peptide, Modulates the Differentiation and Function of Th Subsets in Rheumatoid Arthritis. Journal of Immunology Research, 2018, Article ID: 6043710. https://doi.org/10.1155/2018/6043710 |
[23] | Beydon, M., McCoy, S., Nguyen, Y., Sumida, T., Mariette, X. and Seror, R. (2023) Epidemiology of Sj?gren syndrome. Nature Reviews Rheumatology, 20, 158-169. https://doi.org/10.1038/s41584-023-01057-6 |
[24] | T?rnwall, J., Uusitalo, H., Hukkanen, M., et al. (1994) Distribution of Vasoactive Intestinal Peptide (VIP) and Its Binding Sites in Labial Salivary Glands in Sj?gren’s Syndrome and in Normal Controls. Clinical and Experimental Rheumatology, 12, 287-292. |
[25] | Cha, S., Peck, A.B. and Humphreys-Beher, M.G. (2002) Progress in Understanding Autoimmune Exocrinopathy Using The Non-Obese Diabetic Mouse: An Update. Critical Reviews in Oral Biology & Medicine, 13, 5-16. https://doi.org/10.1177/154411130201300103 |
[26] | Groneberg, D.A., Springer, J. and Fischer, A. (2001) Vasoactive Intestinal Polypeptide as Mediator of Asthma. Pulmonary Pharmacology & Therapeutics, 14, 391-401. https://doi.org/10.1006/pupt.2001.0306 |
[27] | Li, C., Zhu, F., Wu, B. and Wang, Y. (2017) Vasoactive Intestinal Peptide Protects Salivary Glands against Structural Injury and Secretory Dysfunction via IL-17A and AQP5 Regulation in a Model of Sj?gren Syndrome. Neuroimmunomodulation, 24, 300-309. https://doi.org/10.1159/000486859 |
[28] | Lodde, B.M. (2006) Effect of Human Vasoactive Intestinal Peptide Gene Transfer in a Murine Model of Sjogren’s Syndrome. Annals of the Rheumatic Diseases, 65, 195-200. https://doi.org/10.1136/ard.2005.038232 |
[29] | Li, Y., Zhu, W., Lin, R., Zhao, J. and Wang, Y. (2023) Vasoactive Intestinal Peptide Exerts Therapeutic Action by Regulating PTEN in a Model of Sj?gren’s Disease. Immunity, Inflammation and Disease, 11, e936. https://doi.org/10.1002/iid3.936 |
[30] | Jakimovski, D., Bittner, S., Zivadinov, R., Morrow, S.A., Benedict, R.H., Zipp, F., et al. (2024) Multiple Sclerosis. The Lancet, 403, 183-202. https://doi.org/10.1016/s0140-6736(23)01473-3 |
[31] | Al-Keilani, M.S., Almomani, B.A., Al-Sawalha, N.A., Al Qawasmeh, M. and Jaradat, S.A. (2021) Significance of Serum VIP and PACAP in Multiple Sclerosis: An Exploratory Case-Control Study. Neurological Sciences, 43, 2621-2630. https://doi.org/10.1007/s10072-021-05682-5 |
[32] | Baranowska-Bik, A., Kochanowski, J., Uchman, D., Wolinska-Witort, E., Kalisz, M., Martynska, L., et al. (2013) Vasoactive Intestinal Peptide (VIP) and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) in Humans with Multiple Sclerosis. Journal of Neuroimmunology, 263, 159-161. https://doi.org/10.1016/j.jneuroim.2013.08.012 |
[33] | Cobo, M., Anderson, P., Benabdellah, K., Toscano, M.G., Mu?oz, P., García-Pérez, A., et al. (2013) Mesenchymal Stem Cells Expressing Vasoactive Intestinal Peptide Ameliorate Symptoms in a Model of Chronic Multiple Sclerosis. Cell Transplantation, 22, 839-854. https://doi.org/10.3727/096368912x657404 |
[34] | Fernandez‐Martin, A., Gonzalez‐Rey, E., Chorny, A., Ganea, D. and Delgado, M. (2006) Vasoactive Intestinal Peptide Induces Regulatory T Cells during Experimental Autoimmune Encephalomyelitis. European Journal of Immunology, 36, 318-326. https://doi.org/10.1002/eji.200535430 |
[35] | Rapaport, R. (2024) Type 1 Diabetes. Endocrinology and Metabolism Clinics of North America, 53, xv-xvi. https://doi.org/10.1016/j.ecl.2023.11.002 |
[36] | Jimeno, R., Gomariz, R.P., Gutiérrez‐Ca?as, I., Martínez, C., Juarranz, Y. and Leceta, J. (2010) New Insights into the Role of VIP on the Ratio of T‐Cell Subsets during the Development of Autoimmune Diabetes. Immunology & Cell Biology, 88, 734-745. https://doi.org/10.1038/icb.2010.29 |
[37] | Martin, B., Shin, Y., White, C.M., Ji, S., Kim, W., Carlson, O.D., et al. (2010) Vasoactive Intestinal Peptide–null Mice Demonstrate Enhanced Sweet Taste Preference, Dysglycemia, and Reduced Taste Bud Leptin Receptor Expression. Diabetes, 59, 1143-1152. https://doi.org/10.2337/db09-0807 |
[38] | Kato, I., Suzuki, Y., Akabane, A., Yonekura, H., Tanaka, O., Kondo, H., et al. (1994) Transgenic Mice Overexpressing Human Vasoactive Intestinal Peptide (VIP) Gene in Pancreatic Beta Cells. Evidence for Improved Glucose Tolerance and Enhanced Insulin Secretion by VIP and PHM-27 in Vivo. Journal of Biological Chemistry, 269, 21223-21228. https://doi.org/10.1016/s0021-9258(17)31951-8 |
[39] | Fanouriakis, A., Kostopoulou, M., Andersen, J., Aringer, M., Arnaud, L., Bae, S., et al. (2023) EULAR Recommendations for the Management of Systemic Lupus Erythematosus: 2023 Update. Annals of the Rheumatic Diseases, 83, 15-29. https://doi.org/10.1136/ard-2023-224762 |
[40] | Fu, D., Senouthai, S., Wang, J. and You, Y. (2019) Vasoactive Intestinal Peptide Ameliorates Renal Injury in a Pristane-Induced Lupus Mouse Model by Modulating Th17/Treg Balance. BMC Nephrology, 20, Article No. 350. https://doi.org/10.1186/s12882-019-1548-y |
[41] | Bloom, S.R., Polak, J. and Pearse, A.G.E. (1973) Vasoactive Intestinal Peptide and Watery-Diarrh?a Syndrome. The Lancet, 302, 14-16. https://doi.org/10.1016/s0140-6736(73)91947-8 |
[42] | Fernandez-Montesinos, R., Castillo, P.M., Klippstein, R., Gonzalez-Rey, E., Mejias, J.A., Zaderenko, A.P., et al. (2009) Chemical Synthesis and Characterization of Silver-Protected Vasoactive Intestinal Peptide Nanoparticles. Nanomedicine, 4, 919-930. https://doi.org/10.2217/nnm.09.79 |
[43] | Masaka, T., Li, Y., Kawatobi, S., Koide, Y., Takami, A., Yano, K., et al. (2014) Liposome Modified with VIP-Lipopeptide as a New Drug Delivery System. Yakugaku Zasshi, 134, 987-995. https://doi.org/10.1248/yakushi.14-00019 |
[44] | Olson, K.E., Kosloski-Bilek, L.M., Anderson, K.M., Diggs, B.J., Clark, B.E., Gledhill, J.M., et al. (2015) Selective VIP Receptor Agonists Facilitate Immune Transformation for Dopaminergic Neuroprotection in MPTP-Intoxicated Mice. The Journal of Neuroscience, 35, 16463-16478. https://doi.org/10.1523/jneurosci.2131-15.2015 |
[45] | Seoane, I.V., Ortiz, A.M., Piris, L., Lamana, A., Juarranz, Y., García-Vicu?a, R., et al. (2016) Clinical Relevance of VPAC1 Receptor Expression in Early Arthritis: Association with IL-6 and Disease Activity. PLOS ONE, 11, e0149141. https://doi.org/10.1371/journal.pone.0149141 |
[46] | Sun, W., Hong, J., Zang, Y.C.Q., Liu, X. and Zhang, J.Z. (2006) Altered Expression of Vasoactive Intestinal Peptide Receptors in T Lymphocytes and Aberrant Th1 Immunity in Multiple Sclerosis. International Immunology, 18, 1691-1700. https://doi.org/10.1093/intimm/dxl103 |