|
慢性阻塞性肺疾病与肌少症的研究进展
|
Abstract:
慢性阻塞性肺疾病,简称:慢阻肺,是一种以气道狭窄和呼吸障碍为特征的慢性炎症性肺疾病。肌少症表现为随年龄增长而出现的肌肉质量和功能减退,肌少症不仅是是慢阻肺发生及发展的独立危险因素,也是导致慢阻肺患者疾病快速进展、住院率及死亡率升高以及不良预后发生的严重并发症之一。因此,对于两种疾病的深入了解,有助于制定有效的管理策略。
Chronic Obstructive Pulmonary Disease, or simply: COPD, is a chronic inflammatory lung disease characterized by narrowed airways and impaired breathing. Sarcopenia manifests as a loss of muscle mass and function with age. Sarcopenia is not only an independent risk factor for the development and progression of chronic obstructive pulmonary disease, but also one of the serious complications leading to rapid disease progression, increased hospitalization and mortality rates, and the occurrence of poor prognosis in patients with chronic obstructive pulmonary disease. Therefore, an in-depth understanding of both diseases can help to develop effective management strategies.
[1] | Rosenberg, I. (1989) Epidemiologic and Methodologic Problems in Determining Nutritional Status of Older Persons. The American Journal of Clinical Nutrition, 50, 1121-1235. |
[2] | Cruz-Jentoft, A.J., Baeyens, J.P., Bauer, J.M., Boirie, Y., Cederholm, T., Landi, F., et al. (2010) Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age and Ageing, 39, 412-423. https://doi.org/10.1093/ageing/afq034 |
[3] | Morley, J.E., et al. (2011) Sarcopenia with Limited Mobility: An International Consensus. Journal of the American Medical Directors Association, 12, 403-409. |
[4] | Yeung, S.S.Y., Reijnierse, E.M., Pham, V.K., Trappenburg, M.C., Lim, W.K., Meskers, C.G.M., et al. (2019) Sarcopenia and Its Association with Falls and Fractures in Older Adults: A Systematic Review and Meta‐Analysis. Journal of Cachexia, Sarcopenia and Muscle, 10, 485-500. https://doi.org/10.1002/jcsm.12411 |
[5] | 姜珊, 康琳, 刘晓红. 2019亚洲肌少症诊断及治疗共识解读[J]. 中华老年医学杂志, 2020, 39(4): 373-376. |
[6] | Chen, L., Woo, J., Assantachai, P., Auyeung, T., Chou, M., Iijima, K., et al. (2020) Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. Journal of the American Medical Directors Association, 21, 300-307.e2. https://doi.org/10.1016/j.jamda.2019.12.012 |
[7] | Sinelnikov, A., Qu, C., Fetzer, D.T., Pelletier, J., Dunn, M.A., Tsung, A., et al. (2016) Measurement of Skeletal Muscle Area: Comparison of CT and MR Imaging. European Journal of Radiology, 85, 1716-1721. https://doi.org/10.1016/j.ejrad.2016.07.006 |
[8] | Borga, M., West, J., Bell, J.D., Harvey, N.C., Romu, T., Heymsfield, S.B., et al. (2018) Advanced Body Composition Assessment: From Body Mass Index to Body Composition Profiling. Journal of Investigative Medicine, 66, 1-9. https://doi.org/10.1136/jim-2018-000722 |
[9] | Tosato, M., Marzetti, E., Cesari, M., Savera, G., Miller, R.R., Bernabei, R., et al. (2017) Measurement of Muscle Mass in Sarcopenia: From Imaging to Biochemical Markers. Aging Clinical and Experimental Research, 29, 19-27. https://doi.org/10.1007/s40520-016-0717-0 |
[10] | Albano, D., Messina, C., Vitale, J. and Sconfienza, L.M. (2019) Imaging of Sarcopenia: Old Evidence and New Insights. European Radiology, 30, 2199-2208. https://doi.org/10.1007/s00330-019-06573-2 |
[11] | 孙鹤, 孙玲玲, 潘诗农, 等. 肥胖症对体质成分的交互作用及影像学评价现状[J]. 中国医学影像技术, 2018, 34(8): 1263-1266. |
[12] | Prado, C.M.M. and Heymsfield, S.B. (2014) Lean Tissue Imaging: A New Era for Nutritionanl Assessment Andintervention. Journal of Parenteral and Enteral Nutrition, 38, 940-953. https://doi.org/10.1177/0148607114550189 |
[13] | Kyle, U.G., Genton, L., Hans, D. and Pichard, C. (2003) Validation of a Bioelectrical Impedance Analysis Equation to Predict Appendicular Skeletal Muscle Mass (ASMM). Clinical Nutrition, 22, 537-543. https://doi.org/10.1016/s0261-5614(03)00048-7 |
[14] | Rutten, E.P.A., Spruit, M.A. and Wouters, E.F.M. (2010) Critical View on Diagnosing Muscle Wasting by Single-Frequency Bio-Electrical Impedance in COPD. Respiratory Medicine, 104, 91-98. https://doi.org/10.1016/j.rmed.2009.07.004 |
[15] | Kashani, K.B., Frazee, E.N., Kukrálová, L., Sarvottam, K., Herasevich, V., Young, P.M., et al. (2017) Evaluating Muscle Mass by Using Markers of Kidney Function: Development of the Sarcopenia Index. Critical Care Medicine, 45, e23-e29. https://doi.org/10.1097/ccm.0000000000002013 |
[16] | Trajanoska, K., Schoufour, J.D., Darweesh, S.K., Benz, E., Medina-Gomez, C., Alferink, L.J., et al. (2018) Sarcopenia and Its Clinical Correlates in the General Population: The Rotterdam Study. Journal of Bone and Mineral Research, 33, 1209-1218. https://doi.org/10.1002/jbmr.3416 |
[17] | Sepúlveda‐Loyola, W., Osadnik, C., Phu, S., Morita, A.A., Duque, G. and Probst, V.S. (2020) Diagnosis, Prevalence, and Clinical Impact of Sarcopenia in COPD: A Systematic Review and Meta‐Analysis. Journal of Cachexia, Sarcopenia and Muscle, 11, 1164-1176. https://doi.org/10.1002/jcsm.12600 |
[18] | Morley, J.E. (2008) Sarcopenia: Diagnosis and Treatment. The Journal of Nutrition, Health and Aging, 12, 452-456. https://doi.org/10.1007/bf02982705 |
[19] | Xin, C., Sun, X., Lu, L. and Shan, L. (2021) Prevalence of Sarcopenia in Older Chinese Adults: A Systematic Review and Meta-Analysis. BMJ Open, 11, e041879. https://doi.org/10.1136/bmjopen-2020-041879 |
[20] | Smith, M. and Wrobel, J. (2014) Epidemiology and Clinical Impact of Major Comorbidities in Patients with COPD. International Journal of Chronic Obstructive Pulmonary Disease, 9, 871-888. https://doi.org/10.2147/copd.s49621 |
[21] | Demircio?lu, H., Cihan, F.G., Kutlu, R., Yosunkaya, ?. and Zamani, A. (2020) Frequency of Sarcopenia and Associated Outcomes in Patients with Chronic Obstructive Pulmonary Disease. Turkish Journal of Medical Sciences, 50, 1270-1279. https://doi.org/10.3906/sag-1909-36 |
[22] | Bian, A., Hu, H., Rong, Y., Wang, J., Wang, J. and Zhou, X. (2017) A Study on Relationship between Elderly Sarcopenia and Inflammatory Factors IL-6 and Tnf-α. European Journal of Medical Research, 22, Article No. 25. https://doi.org/10.1186/s40001-017-0266-9 |
[23] | Schaap, L.A., Pluijm, S.M.F., Deeg, D.J.H. and Visser, M. (2006) Inflammatory Markers and Loss of Muscle Mass (Sarcopenia) and Strength. The American Journal of Medicine, 119, 526.e9-526.e17. https://doi.org/10.1016/j.amjmed.2005.10.049 |
[24] | Vasileiou, P., Evangelou, K., Vlasis, K., Fildisis, G., Panayiotidis, M., Chronopoulos, E., et al. (2019) Mitochondrial Homeostasis and Cellular Senescence. Cells, 8, Article No. 686. https://doi.org/10.3390/cells8070686 |
[25] | Marzetti, E., Calvani, R., Cesari, M., Buford, T.W., Lorenzi, M., Behnke, B.J., et al. (2013) Mitochondrial Dysfunction and Sarcopenia of Aging: From Signaling Pathways to Clinical Trials. The International Journal of Biochemistry & Cell Biology, 45, 2288-2301. https://doi.org/10.1016/j.biocel.2013.06.024 |
[26] | Wilkinson, D.J., Piasecki, M. and Atherton, P.J. (2018) The Age-Related Loss of Skeletal Muscle Mass and Function: Measurement and Physiology of Muscle Fibre Atrophy and Muscle Fibre Loss in Humans. Ageing Research Reviews, 47, 123-132. https://doi.org/10.1016/j.arr.2018.07.005 |
[27] | Gazdanova, A.A., Kukes, V.G., Parfenova, O.K., et al. (2021) Myostatin—A Modern Understanding of the Physiological Role and Significance in the Development of Age-Associated Diseases. Uspekhi Gerontologii, 34, 701-706. https://doi.org/10.34922/ae.2021.34.5.005 |
[28] | Ju, C., Chen, M., Zhang, J., Lin, Z. and Chen, R. (2016) Higher Plasma Myostatin Levels in Cor Pulmonale Secondary to Chronic Obstructive Pulmonary Disease. PLOS ONE, 11, e0150838. https://doi.org/10.1371/journal.pone.0150838 |
[29] | Gosselink, R., Troosters, T. and Decramer, M. (2000) Distribution of Muscle Weakness in Patients with Stable Chronic Obstructive Pulmonary Disease. Journal of Cardiopulmonary Rehabilitation, 20, 353-360. https://doi.org/10.1097/00008483-200011000-00004 |
[30] | Li, Y., Gao, H., Zhao, L. and Wang, J. (2022) Osteoporosis in COPD Patients: Risk Factors and Pulmonary Rehabilitation. The Clinical Respiratory Journal, 16, 487-496. https://doi.org/10.1111/crj.13514 |
[31] | Ma, K., Huang, F., Qiao, R. and Miao, L. (2022) Pathogenesis of Sarcopenia in Chronic Obstructive Pulmonary Disease. Frontiers in Physiology, 13, Article ID: 850964. https://doi.org/10.3389/fphys.2022.850964 |
[32] | 李莎莎, 段凤英. 慢性阻塞性肺疾病伴营养不良的研究进展[J]. 实用医学杂志, 2015, 31(11): 1885-1887. |
[33] | Kim, S.H., Shin, M.J., Shin, Y.B. and Kim, K.U. (2019) Sarcopenia Associated with Chronic Obstructive Pulmonary Disease. Journal of Bone Metabolism, 26, 65. https://doi.org/10.11005/jbm.2019.26.2.65 |
[34] | Spruit, M.A., Singh, S.J., Garvey, C., et al. (2013) An Official American Thoracic Society/European Respiratory Society Statement: Key Concepts and Advances in Pulmonary Rehabilitation. American Journal of Respiratory and Critical Care Medicine, 188, e13-e64. |
[35] | Passey, S.L., Hansen, M.J., Bozinovski, S., McDonald, C.F., Holland, A.E. and Vlahos, R. (2016) Emerging Therapies for the Treatment of Skeletal Muscle Wasting in Chronic Obstructive Pulmonary Disease. Pharmacology & Therapeutics, 166, 56-70. https://doi.org/10.1016/j.pharmthera.2016.06.013 |
[36] | Broekhuizen, R. (2005) Polyunsaturated Fatty Acids Improve Exercise Capacity in Chronic Obstructive Pulmonary Disease. Thorax, 60, 376-382. https://doi.org/10.1136/thx.2004.030858 |
[37] | Jolliffe, D.A., Greenberg, L., Hooper, R.L., Mathyssen, C., Rafiq, R., de Jongh, R.T., et al. (2019) Vitamin D to Prevent Exacerbations of COPD: Systematic Review and Meta-Analysis of Individual Participant Data from Randomised Controlled Trials. Thorax, 74, 337-345. https://doi.org/10.1136/thoraxjnl-2018-212092 |
[38] | Pan, L., Wang, M., Xie, X., Du, C. and Guo, Y. (2014) Effects of Anabolic Steroids on Chronic Obstructive Pulmonary Disease: A Meta-Analysis of Randomised Controlled Trials. PLOS ONE, 9, e84855. https://doi.org/10.1371/journal.pone.0084855 |
[39] | Baillargeon, J., Urban, R.J., Zhang, W., Zaiden, M.F., Javed, Z., Sheffield-Moore, M., et al. (2018) Testosterone Replacement Therapy and Hospitalization Rates in Men with COPD. Chronic Respiratory Disease, 16, 1-9. https://doi.org/10.1177/1479972318793004 |
[40] | Pape, G.S., Friedman, M., Underwood, L.E. and Clemmons, D.R. (1991) The Effect of Growth Hormone on Weight Gain and Pulmonary Function in Patients with Chronic Obstructive Lung Disease. Chest, 99, 1495-1500. https://doi.org/10.1378/chest.99.6.1495 |
[41] | Tashkin, D. (2015) Smoking Cessation in Chronic Obstructive Pulmonary Disease. Seminars in Respiratory and Critical Care Medicine, 36, 491-507. https://doi.org/10.1055/s-0035-1555610 |
[42] | Degens, H., Gayan-Ramirez, G. and van Hees, H.W.H. (2015) Smoking-Induced Skeletal Muscle Dysfunction. From Evidence to Mechanisms. American Journal of Respiratory and Critical Care Medicine, 191, 620-625. https://doi.org/10.1164/rccm.201410-1830pp |
[43] | Troosters, T., Maltais, F., Leidy, N., Lavoie, K.L., Sedeno, M., Janssens, W., et al. (2018) Effect of Bronchodilation, Exercise Training, and Behavior Modification on Symptoms and Physical Activity in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 198, 1021-1032. https://doi.org/10.1164/rccm.201706-1288oc |
[44] | Mineo, D., Ambrogi, V., Lauriola, V., Pompeo, E. and Mineo, T.C. (2010) Recovery of Body Composition Improves Long-Term Outcomes after Lung Volume Reduction Surgery for Emphysema. European Respiratory Journal, 36, 408-416. https://doi.org/10.1183/09031936.00142309 |
[45] | Sanders, K.J.C., Klooster, K., Vanfleteren, L.E.G.W., Slebos, D. and Schols, A.M.W.J. (2018) CT-Derived Muscle Remodelling after Bronchoscopic Lung Volume Reduction in Advanced Emphysema. Thorax, 74, 206-207. https://doi.org/10.1136/thoraxjnl-2018-211931 |
[46] | van Bakel, S.I., Gosker, H.R., Langen, R.C. and Schols, A.M. (2021) Towards Personalized Management of Sarcopenia in COPD. International Journal of Chronic Obstructive Pulmonary Disease, 16, 25-40. https://doi.org/10.2147/copd.s280540 |