全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

罗哌卡因的抗肿瘤作用机制及控释体系应用
Anti-Tumor Mechanism of Ropivacaine and Application of Controlled Release System

DOI: 10.12677/acm.2024.1472098, PP. 937-944

Keywords: 罗哌卡因,恶性肿瘤,缓释
Ropivacaine
, Neoplasms, Delayed-Action Preparations

Full-Text   Cite this paper   Add to My Lib

Abstract:

恶性肿瘤病死率逐年增高,对人类的生活造成了难以预计的影响。目前针对恶性肿瘤仍以手术切除为主,辅助以放疗、化疗等,但仍存在肿瘤复发及转移等问题。围术期手术操作及麻醉可通过多种因素对肿瘤的预后造成影响,包括改变肿瘤局部微环境变化、提升炎症及应激水平、抑制免疫等促进恶性肿瘤进展,增加术后肿瘤复发及转移风险。近年来研究发现,罗哌卡因(Ropivacaine, RVC)能够通过多种途径影响肿瘤进展,抑制肿瘤活性及转移。文中就罗哌卡因对肿瘤的影响及药物递送体系的应用予以综述,旨在探讨围手术期罗哌卡因及其控释体系在肿瘤中的作用。
The mortality rate of malignant tumors continues to rise annually, posing significant and unpredictable impacts on human life. Currently, the mainstay of treatment for malignant tumors involves surgical resection, coupled with radiotherapy, chemotherapy, and other modalities. Nonetheless, challenges such as tumor recurrence and metastasis persist. Perioperative surgical interventions and anesthesia can influence tumor prognosis through a range of factors, including alterations in the local tumor microenvironment, elevation of inflammatory and stress levels, and suppression of the immune system, all of which can contribute to the progression of malignant tumors and increase the risk of postoperative tumor recurrence and metastasis. Recent research has revealed that ropivacaine (Ropivacaine, RVC) can impact tumor progression through various pathways, inhibiting tumor activity and metastasis. This review aims to provide a comprehensive overview of the effects of ropivacaine on tumors and the application of drug delivery systems, particularly exploring the role of perioperative ropivacaine and its controlled release system in tumor management.

References

[1]  刘宗超, 李哲轩, 张阳, 等. 2020全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2021, 7(2): 1-13.
[2]  Neeman, E. and Ben-Eliyahu, S. (2013) Surgery and Stress Promote Cancer Metastasis: New Outlooks on Perioperative Mediating Mechanisms and Immune Involvement. Brain, Behavior, and Immunity, 30, S32-S40.
https://doi.org/10.1016/j.bbi.2012.03.006
[3]  Gottschalk, A., Sharma, S., Ford, J., Durieux, M.E. and Tiouririne, M. (2010) The Role of the Perioperative Period in Recurrence after Cancer Surgery. Anesthesia & Analgesia, 110, 1636-1643.
https://doi.org/10.1213/ane.0b013e3181de0ab6
[4]  Thornton, L.M., Andersen, B.L. and Blakely, W.P. (2010) The Pain, Depression, and Fatigue Symptom Cluster in Advanced Breast Cancer: Covariation with the Hypothalamic-Pituitary-Adrenal Axis and the Sympathetic Nervous System. Health Psychology, 29, 333-337.
https://doi.org/10.1037/a0018836
[5]  Royds, J., Khan, A.H. and Buggy, D.J. (2016) An Update on Existing Ongoing Prospective Trials Evaluating the Effect of Anesthetic and Analgesic Techniques during Primary Cancer Surgery on Cancer Recurrence or Metastasis. International Anesthesiology Clinics, 54, e76-e83.
https://doi.org/10.1097/aia.0000000000000123
[6]  Piegeler, T., Schl?pfer, M., Dull, R.O., Schwartz, D.E., Borgeat, A., Minshall, R.D., et al. (2015) Clinically Relevant Concentrations of Lidocaine and Ropivacaine Inhibit TNFα-Induced Invasion of Lung Adenocarcinoma Cells in Vitro by Blocking the Activation of Akt and Focal Adhesion Kinase. British Journal of Anaesthesia, 115, 784-791.
https://doi.org/10.1093/bja/aev341
[7]  Chang, Y., Liu, C., Chen, M., Hsu, Y., Chen, S., Lin, C., et al. (2014) Local Anesthetics Induce Apoptosis in Human Breast Tumor Cells. Anesthesia & Analgesia, 118, 116-124.
https://doi.org/10.1213/ane.0b013e3182a94479
[8]  Chang, Y., Hsu, Y., Liu, C., Huang, S., Hu, M. and Cheng, S. (2014) Local Anesthetics Induce Apoptosis in Human Thyroid Cancer Cells through the Mitogen-Activated Protein Kinase Pathway. PLOS ONE, 9, e89563.
https://doi.org/10.1371/journal.pone.0089563
[9]  Castelli, V., Piroli, A., Marinangeli, F., d’Angelo, M., Benedetti, E., Ippoliti, R., et al. (2019) Local Anesthetics Counteract Cell Proliferation and Migration of Human Triple‐Negative Breast Cancer and Melanoma Cells. Journal of Cellular Physiology, 235, 3474-3484.
https://doi.org/10.1002/jcp.29236
[10]  Zhao, L., Han, S., Hou, J., Shi, W., Zhao, Y. and Chen, Y. (2021) The Local Anesthetic Ropivacaine Suppresses Progression of Breast Cancer by Regulating miR-27b-3p/YAP Axis. Aging, 13, 16341-16352.
https://doi.org/10.18632/aging.203160
[11]  Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297.
https://doi.org/10.1016/s0092-8674(04)00045-5
[12]  Rupaimoole, R. and Slack, F.J. (2017) Microrna Therapeutics: Towards a New Era for the Management of Cancer and Other Diseases. Nature Reviews Drug Discovery, 16, 203-222.
https://doi.org/10.1038/nrd.2016.246
[13]  Elster, D., Tollot, M., Schlegelmilch, K., Ori, A., Rosenwald, A., Sahai, E., et al. (2018) TRPS1 Shapes YAP/TEAD-Dependent Transcription in Breast Cancer Cells. Nature Communications, 9, 3115-3116.
https://doi.org/10.1038/s41467-018-05370-7
[14]  Wu, L. and Yang, X. (2018) Targeting the Hippo Pathway for Breast Cancer Therapy. Cancers, 10, Article 422.
https://doi.org/10.3390/cancers10110422
[15]  Zhang, N., Xing, X., Gu, F., Zhou, G., Liu, X. and Li, B. (2020) Ropivacaine Inhibits the Growth, Migration and Invasion of Gastric Cancer through Attenuation of WEE1 and PI3K/AKT Signaling via miR-520a-3p. OncoTargets and Therapy, 13, 5309-5321.
https://doi.org/10.2147/ott.s244550
[16]  Matheson, C.J., Backos, D.S. and Reigan, P. (2016) Targeting WEE1 Kinase in Cancer. Trends in Pharmacological Sciences, 37, 872-881.
https://doi.org/10.1016/j.tips.2016.06.006
[17]  Piegeler, T., Votta-Velis, E.G., Liu, G., Place, A.T., Schwartz, D.E., Beck-Schimmer, B., et al. (2012) Antimetastatic Potential of Amide-Linked Local Anesthetics. Anesthesiology, 117, 548-559.
https://doi.org/10.1097/aln.0b013e3182661977
[18]  Kim, M.P., Park, S.I., Kopetz, S. and Gallick, G.E. (2008) Src Family Kinases as Mediators of Endothelial Permeability: Effects on Inflammation and Metastasis. Cell and Tissue Research, 335, 249-259.
https://doi.org/10.1007/s00441-008-0682-9
[19]  Guarino, M. (2010) Src Signaling in Cancer Invasion. Journal of Cellular Physiology, 223, 14-26.
https://doi.org/10.1002/jcp.22011
[20]  Chen, J., Liu, S., Huang, S. and Wu, Z. (2022) Apoptosis, Proliferation, and Autophagy Are Involved in Local Anesthetic-Induced Cytotoxicity of Human Breast Cancer Cells. International Journal of Molecular Sciences, 23, Article 15455.
https://doi.org/10.3390/ijms232415455
[21]  Wang, W., Zhu, M., Xu, Z., Li, W., Dong, X., Chen, Y., et al. (2019) Ropivacaine Promotes Apoptosis of Hepatocellular Carcinoma Cells through Damaging Mitochondria and Activating Caspase-3 Activity. Biological Research, 52, Article No. 36.
https://doi.org/10.1186/s40659-019-0242-7
[22]  Dixon, S.J. (2017) Ferroptosis: Bug or Feature? Immunological Reviews, 277, 150-157.
https://doi.org/10.1111/imr.12533
[23]  Lei, G., Zhuang, L. and Gan, B. (2022) Targeting Ferroptosis as a Vulnerability in Cancer. Nature Reviews Cancer, 22, 381-396.
https://doi.org/10.1038/s41568-022-00459-0
[24]  Lu, Y., Mao, J., Xu, Y., Pan, H., Wang, Y. and Li, W. (2022) Ropivacaine Represses the Ovarian Cancer Cell Stemness and Facilitates Cell Ferroptosis through Inactivating the PI3K/AKT Signaling Pathway. Human & Experimental Toxicology, 41, 1-11.
https://doi.org/10.1177/09603271221120652
[25]  Humber, C.E., Tierney, J.F., Symonds, R.P., Collingwood, M., Kirwan, J., Williams, C., et al. (2007) Chemotherapy for Advanced, Recurrent or Metastatic Endometrial Cancer: A Systematic Review of Cochrane Collaboration. Annals of Oncology, 18, 409-420.
https://doi.org/10.1093/annonc/mdl417
[26]  Monteran, L., Ershaid, N., Doron, H., Zait, Y., Scharff, Y., Ben-Yosef, S., et al. (2022) Chemotherapy-Induced Complement Signaling Modulates Immunosuppression and Metastatic Relapse in Breast Cancer. Nature Communications, 13, Article No. 5797.
https://doi.org/10.1038/s41467-022-33598-x
[27]  Chen, D., Yan, Y., Xie, J., Pan, J., Chen, Y., Li, Q., et al. (2020) Amide-type Local Anesthetics May Suppress Tumor Cell Proliferation and Sensitize Human Hepatocellular Carcinoma Cells to Cisplatin via Upregulation of RASSF1A Expression and Demethylation. Journal of Cancer, 11, 7312-7319.
https://doi.org/10.7150/jca.46630
[28]  Pratama, M.Y., Pascut, D., Massi, M.N. and Tiribelli, C. (2019) The Role of Microrna in the Resistance to Treatment of Hepatocellular Carcinoma. Annals of Translational Medicine, 7, 577-577.
https://doi.org/10.21037/atm.2019.09.142
[29]  Wang, W., Wang, T., Lin, H., Liu, D., Yu, P. and Zhang, J. (2024) Ropivacaine Combined with Sorafenib Attenuates Hepatocellular Carcinoma Cell Proliferation and Metastasis by Inhibiting the miR‐224/HOXD10 Axis. Environmental Toxicology, 39, 2429-2438.
https://doi.org/10.1002/tox.24111
[30]  Yuki, K. and Eckenhoff, R.G. (2016) Mechanisms of the Immunological Effects of Volatile Anesthetics: A Review. Anesthesia & Analgesia, 123, 326-335.
https://doi.org/10.1213/ane.0000000000001403
[31]  Yuki, K., Hou, L., Shibamura-Fujiogi, M., Koutsogiannaki, S. and Soriano, S.G. (2021) Mechanistic Consideration of the Effect of Perioperative Volatile Anesthetics on Phagocytes. Clinical Immunology, 222, Article ID: 108635.
https://doi.org/10.1016/j.clim.2020.108635
[32]  Plein, L.M. and Rittner, H.L. (2017) Opioids and the Immune System—Friend or Foe. British Journal of Pharmacology, 175, 2717-2725.
https://doi.org/10.1111/bph.13750
[33]  Lysle, D.T., Coussons, M.E., Watts, V.J., et al. (1993) Morphine-Induced Alterations of Immune Status: Dose Dependency, Compartment Specificity and Antagonism by Naltrexone. Journal of Pharmacology and Experimental Therapeutics, 265, 1071-1078.
[34]  Eisenstein, T.K., Meissler, J.J., Rogers, T.J., et al. (1995) Mouse Strain Differences in Immunosuppression by Opioids in Vitro. Journal of Pharmacology and Experimental Therapeutics, 275, 1484-1489.
[35]  Connolly, C. and Buggy, D.J. (2016) Opioids and Tumour Metastasis: Does the Choice of the Anesthetic-Analgesic Technique Influence Outcome after Cancer Surgery? Current Opinion in Anaesthesiology, 29, 468-474.
https://doi.org/10.1097/aco.0000000000000360
[36]  Xuan, W., Hankin, J., Zhao, H., Yao, S. and Ma, D. (2014) The Potential Benefits of the Use of Regional Anesthesia in Cancer Patients. International Journal of Cancer, 137, 2774-2784.
https://doi.org/10.1002/ijc.29306
[37]  Kochhar, A., Banday, J., Ahmad, Z., Panjiar, P. and Vajifdar, H. (2020) Cervical Epidural Analgesia Combined with General Anesthesia for Head and Neck Cancer Surgery: A Randomized Study. Journal of Anaesthesiology Clinical Pharmacology, 36, 182-186.
https://doi.org/10.4103/joacp.joacp_72_19
[38]  McDowell, S.A.C. and Quail, D.F. (2019) Immunological Regulation of Vascular Inflammation during Cancer Metastasis. Frontiers in Immunology, 10, Article 1984.
https://doi.org/10.3389/fimmu.2019.01984
[39]  Martinsson, T., Oda, T., Fernvik, E., et al. (1997) Ropivacaine Inhibits Leukocyte Rolling, Adhesion and CD11b/CD18 Expression. Journal of Pharmacology and Experimental Therapeutics, 283, 59-65.
[40]  龙凯, 曹佩, 季天骄. 药物控释体系用于局部麻醉的研究进展[J]. 协和医学杂志, 2022, 13(3): 363-369.
[41]  Bezu, L., Wu Chuang, A., Sauvat, A., Humeau, J., Xie, W., Cerrato, G., et al. (2022) Local Anesthetics Elicit Immune-Dependent Anticancer Effects. Journal for ImmunoTherapy of Cancer, 10, e004151.
https://doi.org/10.1136/jitc-2021-004151
[42]  Peng, F., Liu, J., Chen, J., Wu, W., Zhang, Y., Zhao, G., et al. (2023) Nanocrystals Slow-Releasing Ropivacaine and Doxorubicin to Synergistically Suppress Tumor Recurrence and Relieve Postoperative Pain. ACS Nano, 17, 20135-20152.
https://doi.org/10.1021/acsnano.3c05831
[43]  Zhao, M., Zhu, S., Zhang, D., Zhou, C., Yang, Z., Wang, C., et al. (2023) Long-lasting Postoperative Analgesia with Local Anesthetic-Loaded Hydrogels Prevent Tumor Recurrence via Enhancing CD8+T Cell Infiltration. Journal of Nanobiotechnology, 21, Article No. 50.
https://doi.org/10.1186/s12951-023-01803-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133