|
小檗碱通过调节肠道菌群治疗2型糖尿病
|
Abstract:
2型糖尿病(T2DM)及其并发症是一种严重威胁人们生活质量的公共卫生问题。肠道菌群的调节在T2DM的治疗已得到广泛认可,已有证据表明肠道菌群对葡萄糖代谢有影响,通过调节肠道菌群治疗糖尿病具有重要临床应用前景。小檗碱(BBR)是黄连的主要成分,通过调节肠道菌群可降糖、降脂,以及减重和抗炎,被认为是治疗T2DM的潜在药物之一。
Type 2 diabetes mellitus (T2DM) and its complications are major public health problems that seriously affect the quality of human life. The regulation of gut microbiota has been widely recognized in T2DM treatment. There have been evidences that gut microbiota has an impact on glucose metabolism, and the regulation of gut microbiota in diabetes treatment has an important clinical application prospect. Berberine (BBR), the main component of Coptischinensis, is considered as one of the potential strategies in T2DM treatment by regulating gut microbiota, which can reduce blood sugar, blood lipid, weight loss and anti-inflammatory.
[1] | 中国2型糖尿病防治指南(2020年版) (上) [J]. 中国实用内科杂志, 2021, 41(8): 668-695. |
[2] | 杨燕, 王德峰. 肠道菌群在糖尿病治疗中的研究进展[J]. 临床荟萃, 2022, 37(10): 953-956. |
[3] | Gurung, M., Li, Z., You, H., Rodrigues, R., Jump, D.B., Morgun, A., et al. (2020) Role of Gut Microbiota in Type 2 Diabetes Pathophysiology. EBioMedicine, 51, Article ID: 102590. https://doi.org/10.1016/j.ebiom.2019.11.051 |
[4] | Han, J., Lin, H. and Huang, W. (2011) Modulating Gut Microbiota as an Anti-Diabetic Mechanism of Berberine. Medical Science Monitor, 17, RA164-RA167. https://doi.org/10.12659/msm.881842 |
[5] | Yang, F., Gao, R., Luo, X., Liu, R. and Xiong, D. (2023) Berberine Influences Multiple Diseases by Modifying Gut Microbiota. Frontiers in Nutrition, 10, Article ID: 1187718. https://doi.org/10.3389/fnut.2023.1187718 |
[6] | Habtemariam, S. (2020) Berberine Pharmacology and the Gut Microbiota: A Hidden Therapeutic Link. Pharmacological Research, 155, Article ID: 104722. https://doi.org/10.1016/j.phrs.2020.104722 |
[7] | Wu, J., Yang, K., Fan, H., Wei, M. and Xiong, Q. (2023) Targeting the Gut Microbiota and Its Metabolites for Type 2 Diabetes Mellitus. Frontiers in Endocrinology, 14, Article ID: 1114424. https://doi.org/10.3389/fendo.2023.1114424 |
[8] | Ma, Q., Li, Y., Li, P., Wang, M., Wang, J., Tang, Z., et al. (2019) Research Progress in the Relationship between Type 2 Diabetes Mellitus and Intestinal Flora. Biomedicine & Pharmacotherapy, 117, Article ID: 109138. https://doi.org/10.1016/j.biopha.2019.109138 |
[9] | Liu, L., Zhang, J., Cheng, Y., Zhu, M., Xiao, Z., Ruan, G., et al. (2022) Gut Microbiota: A New Target for T2DM Prevention and Treatment. Frontiers in Endocrinology, 13, Article ID: 958218. https://doi.org/10.3389/fendo.2022.958218 |
[10] | Allin, K.H., Tremaroli, V., Caesar, R., Jensen, B.A.H., Damgaard, M.T.F., Bahl, M.I., et al. (2018) Aberrant Intestinal Microbiota in Individuals with Prediabetes. Diabetologia, 61, 810-820. https://doi.org/10.1007/s00125-018-4550-1 |
[11] | Letchumanan, G., Abdullah, N., Marlini, M., Baharom, N., Lawley, B., Omar, M.R., et al. (2022) Gut Microbiota Composition in Prediabetes and Newly Diagnosed Type 2 Diabetes: A Systematic Review of Observational Studies. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 943427. https://doi.org/10.3389/fcimb.2022.943427 |
[12] | 张勤, 龙沁, 邓玉玲, 等. 早发2型糖尿病肠道菌群分布特征研究[J]. 中国糖尿病杂志, 2023, 31(2): 113-119. |
[13] | Chen, Y., Hao, Z., Zhao, H., Duan, X., Jia, D., Li, K., et al. (2022) Berberine Alleviates Intestinal Barrier Dysfunction in Glucolipid Metabolism Disorder Hamsters by Modulating Gut Microbiota and Gut‐Microbiota‐Related Tryptophan Metabolites. Journal of the Science of Food and Agriculture, 103, 1464-1473. https://doi.org/10.1002/jsfa.12242 |
[14] | Lv, Y., Zhao, X., Guo, W., Gao, Y., Yang, S., Li, Z., et al. (2018) The Relationship between Frequently Used Glucose-Lowering Agents and Gut Microbiota in Type 2 Diabetes Mellitus. Journal of Diabetes Research, 2018, Article ID: 1890978. https://doi.org/10.1155/2018/1890978 |
[15] | Yao, Y., Chen, H., Yan, L., Wang, W. and Wang, D. (2020) Berberine Alleviates Type 2 Diabetic Symptoms by Altering Gut Microbiota and Reducing Aromatic Amino Acids. Biomedicine & Pharmacotherapy, 131, Article ID: 110669. https://doi.org/10.1016/j.biopha.2020.110669 |
[16] | McCreight, L.J., Bailey, C.J. and Pearson, E.R. (2016) Metformin and the Gastrointestinal Tract. Diabetologia, 59, 426-435. https://doi.org/10.1007/s00125-015-3844-9 |
[17] | Zhang, W., Xu, J., Yu, T. and Chen, Q. (2019) Effects of Berberine and Metformin on Intestinal Inflammation and Gut Microbiome Composition in Db/db Mice. Biomedicine & Pharmacotherapy, 118, Article ID: 109131. https://doi.org/10.1016/j.biopha.2019.109131 |
[18] | Lyu, Y., Zhang, Y., Yang, M., Lin, L., Yang, X., Cheung, S.C.K., et al. (2019) Pharmacokinetic Interactions between Metformin and Berberine in Rats: Role of Oral Administration Sequences and Microbiota. Life Sciences, 235, Article ID: 116818. https://doi.org/10.1016/j.lfs.2019.116818 |
[19] | 王君君, 赖诚诚, 张曙光. 阿卡波糖对2型糖尿病肠道菌群及代谢产物的影响[J]. 中国糖尿病杂志, 2022, 30(8): 633-635. |
[20] | Wang, S., Xu, Z., Cai, B., et al. (2021) Berberine as a Potential Multi-Target Agent for Metabolic Diseases: A Review of Investigations for Berberine. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders), 21, 971-979. https://doi.org/10.2174/22123873mta52oduh1 |
[21] | He, Q., Dong, H., Guo, Y., Gong, M., Xia, Q., Lu, F., et al. (2022) Multi-Target Regulation of Intestinal Microbiota by Berberine to Improve Type 2 Diabetes Mellitus. Frontiers in Endocrinology, 13, Article ID: 1074348. https://doi.org/10.3389/fendo.2022.1074348 |
[22] | Cheng, H., Liu, J., Tan, Y., Feng, W. and Peng, C. (2022) Interactions between Gut Microbiota and Berberine, a Necessary Procedure to Understand the Mechanisms of Berberine. Journal of Pharmaceutical Analysis, 12, 541-555. https://doi.org/10.1016/j.jpha.2021.10.003 |
[23] | Zhang, Z., Cong, L., Peng, R., Han, P., Ma, S., Pan, L., et al. (2021) Transformation of Berberine to Its Demethylated Metabolites by the CYP51 Enzyme in the Gut Microbiota. Journal of Pharmaceutical Analysis, 11, 628-637. https://doi.org/10.1016/j.jpha.2020.10.001 |
[24] | Yue, S., Liu, J., Wang, A., Meng, X., Yang, Z., Peng, C., et al. (2019) Berberine Alleviates Insulin Resistance by Reducing Peripheral Branched-Chain Amino Acids. American Journal of Physiology-Endocrinology and Metabolism, 316, E73-E85. https://doi.org/10.1152/ajpendo.00256.2018 |
[25] | Wang, H., Zhang, H., Gao, Z., Zhang, Q. and Gu, C. (2022) The Mechanism of Berberine Alleviating Metabolic Disorder Based on Gut Microbiome. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 854885. https://doi.org/10.3389/fcimb.2022.854885 |
[26] | Lyu, Y., Li, D., Yuan, X., Li, Z., Zhang, J., Ming, X., et al. (2022) Effects of Combination Treatment with Metformin and Berberine on Hypoglycemic Activity and Gut Microbiota Modulation in db/db Mice. Phytomedicine, 101, Article ID: 154099. https://doi.org/10.1016/j.phymed.2022.154099 |
[27] | Li, C., Cao, H., Huan, Y., Ji, W., Liu, S., Sun, S., et al. (2021) Berberine Combined with Stachyose Improves Glycometabolism and Gut Microbiota through Regulating Colonic MicroRNA and Gene Expression in Diabetic Rats. Life Sciences, 284, Article ID: 119928. https://doi.org/10.1016/j.lfs.2021.119928 |
[28] | Li, C., Wang, X., Lei, L., Liu, M., Li, R., Sun, S., et al. (2019) Berberine Combined with Stachyose Induces Better Glycometabolism than Berberine Alone through Modulating Gut Microbiota and Fecal Metabolomics in Diabetic Mice. Phytotherapy Research, 34, 1166-1174. https://doi.org/10.1002/ptr.6588 |
[29] | Wang, S., Ren, H., Zhong, H., Zhao, X., Li, C., Ma, J., et al. (2021) Combined Berberine and Probiotic Treatment as an Effective Regimen for Improving Postprandial Hyperlipidemia in Type 2 Diabetes Patients: A Double Blinded Placebo Controlled Randomized Study. Gut Microbes, 14, Article ID: 2003176. https://doi.org/10.1080/19490976.2021.2003176 |
[30] | Li, M., Zhou, W., Dang, Y., Li, C., Ji, G. and Zhang, L. (2020) Berberine Compounds Improves Hyperglycemia via Microbiome Mediated Colonic TGR5-GLP Pathway in db/db Mice. Biomedicine & Pharmacotherapy, 132, Article ID: 110953. https://doi.org/10.1016/j.biopha.2020.110953 |