全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于机器学习识别与振荡剪切应力相关的特征基因
Identification of Signature Gene Relate to Oscillatory Shear Stress Based on Machine Learning

DOI: 10.12677/acm.2024.1472093, PP. 888-900

Keywords: 动脉粥样硬化,内皮细胞,震荡剪切应力,层流剪切应力,机器学习,基因
Atherosclerosis
, Endothelial Cells, Oscillating Shear Stress, Laminar Shear Stress, Machine Learning, Gene

Full-Text   Cite this paper   Add to My Lib

Abstract:

背景:动脉粥样硬化(AS)是中风的根本原因,而振荡剪切应力或低剪切应力是动脉粥样硬化的原因之一。我们研究的目的是通过机器学习筛选出受剪切应力调控的基因,并分析其生物学功能,以帮助动脉粥样硬化的诊断和治疗。方法:从基因表达综合数据库(GEO)中检索了GSE20739、GSE16706和GSE1518数据集。首先使用limma软件包筛选差异基因,然后使用蛋白质–蛋白质相互作用(PPI)网络删除一些不相互作用的基因。利用三种机器学习算法——最小绝对收缩和选择算子(LASSO)、随机森林和支持向量机(SVM)——筛选特征基因。通过受试者工作特征(ROC)曲线评估特征基因的诊断性能。结果:筛选出四个受剪切应力调控的特征基因(ADM, RAMP2, GNA14, FABP5),这些基因与动脉粥样硬化相关。ADM和GNA14与振荡剪切应力之间存在强相关性,ADM和FABP5之间存在基因共表达。结论:我们的研究识别了四个受剪切应力调控的基因,这些基因影响动脉粥样硬化的发生和发展,这可能有助于未来动脉粥样硬化的预防和治疗。
Background: Atherosclerosis (AS) is the root cause of stroke, while oscillatory shear stress or low shear stress is one of the reasons for atherosclerosis. The purpose of our research is to screen the genes regulated by shear stress through machine learning and analyze their biological functions to help the diagnosis and treatment of atherosclerosis. Methods: GSE20739, GSE16706 and GSE1518 datasets were retrieved from the gene expression omnibus (GEO) database. We first used the limma package to screen the differential gene, then protein-protein interaction (PPI) network was used to delete some genes that do not interact with each other. Three machine learning algorithms, Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest, Support Vector Machine (SVM) were utilized for screening signature genes. Receiver operating characteristic (ROC) curves estimating the diagnostic performance of signature genes. Results: Four signature genes were screened (ADM, RAMP2, GNA14, FABP5), which regulated by shear stress. The main biological functions of characteristic genes are related to AS. There was a strong correlation between ADM and GNA14 and oscillatory shear stress. There was gene co-expression between ADM and FABP5. Conclusion: Our study identified four genes that was regulated by shear stress and affect the occurrence and development of atherosclerosis, which may be helpful for the prevention and treatment of atherosclerosis in the future.

References

[1]  Phinikaridou, A., Hua, N., Pham, T. and Hamilton, J.A. (2013) Regions of Low Endothelial Shear Stress Colocalize with Positive Vascular Remodeling and Atherosclerotic Plaque Disruption: An in Vivo Magnetic Resonance Imaging Study. Circulation: Cardiovascular Imaging, 6, 302-310.
https://doi.org/10.1161/CIRCIMAGING.112.000176
[2]  Zhou, J., Li, Y.S. and Chien, S. (2014) Shear Stress-Initiated Signaling and Its Regulation of Endothelial Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 2191-2198.
https://doi.org/10.1161/ATVBAHA.114.303422
[3]  Harloff, A., Nussbaumer, A., Bauer, S., Stalder, A.F., Frydrychowicz, A., Weiller, C., et al. (2010) In Vivo Assessment of Wall Shear Stress in the Atherosclerotic Aorta Using Flow-Sensitive 4D MRI. Magnetic Resonance in Medicine, 63, 1529-1536.
https://doi.org/10.1002/mrm.22383
[4]  Hoi, Y., Wasserman, B.A., Lakatta, E.G. and Steinman, D.A. (2010) Carotid Bifurcation Hemodynamics in Older Adults: Effect of Measured versus Assumed Flow Waveform. Journal of Biomechanical Engineering, 132, Article 071006.
https://doi.org/10.1115/1.4001265
[5]  Ma, Q., Gu, W., Li, T., Zhang, K., Cui, Y., Qu, K., et al. (2020) SRGN, a New Identified Shear-Stress-Responsive Gene in Endothelial Cells. Molecular and Cellular Biochemistry, 474, 15-26.
https://doi.org/10.1007/s11010-020-03830-7
[6]  Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux, P., Rudnev, D., Evangelista, C., et al. (2007) NCBI GEO: Mining Tens of Millions of Expression Profiles—Database and Tools Update. Nucleic Acids Research, 35, D760-D765.
https://doi.org/10.1093/nar/gkl887
[7]  Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., et al. (2015) Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Research, 43, E47.
https://doi.org/10.1093/nar/gkv007
[8]  Weichenberger, C.X., Palermo, A., Pramstaller, P.P. and Domingues, F.S. (2017) Exploring Approaches for Detecting Protein Functional Similarity Within an Orthology-Based Framework. Scientific Reports, 7, Article 381.
https://doi.org/10.1038/s41598-017-00465-5
[9]  Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. and Hattori, M. (2004) The KEGG Resource for Deciphering the Genome. Nucleic Acids Research, 32, D277-D280.
https://doi.org/10.1093/nar/gkh063
[10]  Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., et al. (2013) STRING V9.1: Protein-Protein Interaction Networks, with Increased Coverage and Integration. Nucleic Acids Research, 41, D808-D815.
https://doi.org/10.1093/nar/gks1094
[11]  Kohl, M., Wiese, S. and Warscheid, B. (2011) Cytoscape: Software for Visualization and Analysis of Biological Networks. Methods in Molecular Biology, 696, 291-303.
https://doi.org/10.1007/978-1-60761-987-1_18
[12]  Tibshirani, R. (1997) The Lasso Method for Variable Selection in the Cox Model. Statistics in Medicine, 16, 385-395.
https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4%3C385::AID-SIM380%3E3.0.CO;2-3
[13]  Izmirlian, G. (2004) Application of the Random Forest Classification Algorithm to a SELDI-TOF Proteomics Study in the Setting of a Cancer Prevention Trial. Annals of the New York Academy of Sciences, 1020, 154-174.
https://doi.org/10.1196/annals.1310.015
[14]  Sanz, H., Valim, C., Vegas, E., Oller, J.M. and Reverter, F. (2018) SVM-RFE: Selection and Visualization of the Most Relevant Features Through Non-Linear Kernels. BMC Bioinformatics, 19, Article No. 432.
https://doi.org/10.1186/s12859-018-2451-4
[15]  Da Silva, R.A., Fernandes, C., Feltran, G.D.S., Gomes, A.M., de Camargo, Andrade, A.F., Andia, D.C., et al. (2019) Laminar Shear Stress-Provoked Cytoskeletal Changes Are Mediated by Epigenetic Reprogramming of TIMP1 in Human Primary Smooth Muscle Cells. Journal of Cellular Physiology, 234, 6382-6396.
https://doi.org/10.1002/jcp.27374
[16]  Pedrigi, R.M., De Silva, R., Bovens, S.M., Mehta, V.V., Petretto, E. and Krams, R. (2014) Thin-Cap Fibroatheroma Rupture Is Associated with a Fine Interplay of Shear and Wall Stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 2224-2231.
https://doi.org/10.1161/ATVBAHA.114.303426
[17]  Pyne, N.J. and Pyne, S. (2011) Receptor Tyrosine Kinase-G-Protein-Coupled Receptor Signalling Platforms: Out of the Shadow? Trends in Pharmacological Sciences, 32, 443-450.
https://doi.org/10.1016/j.tips.2011.04.002
[18]  White, C.R. and Frangos, J.A. (2007) The Shear Stress of It All: The Cell Membrane and Mechanochemical Transduction. Philosophical Transactions of the Royal Society B, 362, 1459-1467.
https://doi.org/10.1098/rstb.2007.2128
[19]  Otte, L.A., Bell, K.S., Loufrani, L., Yeh, J.C., Melchior, B., Dao, D.N., et al. (2009) Rapid Changes in Shear Stress Induce Dissociation of a Alpha(q/11)-Platelet Endothelial Cell Adhesion Molecule-1 Complex. The Journal of Physiology, 587, 2365-2373.
https://doi.org/10.1113/jphysiol.2009.172643
[20]  Zou, Q.Y., Zhao, Y.J., Zhou, C., Liu, A.X., Zhong, X.Q., Yan, Q., et al. (2019) G Protein Alpha Subunit 14 Mediates Fibroblast Growth Factor 2-Induced Cellular Responses in Human Endothelial Cells. Journal of Cellular Physiology, 234, 10184-10195.
https://doi.org/10.1002/jcp.27688
[21]  Malek, A.M., Alper, S.L. and Izumo, S. (1999) Hemodynamic Shear Stress and Its Role in Atherosclerosis. Journal of the American Medical Association, 282, 2035-2042.
https://doi.org/10.1001/jama.282.21.2035
[22]  Shindo, T., Kurihara, Y., Nishimatsu, H., Moriyama, N., Kakoki, M., Wang, Y., et al. (2001) Vascular Abnormalities and Elevated Blood Pressure in Mice Lacking Adrenomedullin Gene. Circulation, 104, 1964-1971.
https://doi.org/10.1161/hc4101.097111
[23]  Koyama, T., Kuriyama, N., Ozaki, E., Matsui, D., Watanabe, I., Takeshita, W., et al. (2017) Genetic Variants of RAMP2 and CLR Are Associated with Stroke. Journal of Atherosclerosis and Thrombosis, 24, 1267-1281.
https://doi.org/10.5551/jat.41517
[24]  Kitamura, K., Kangawa, K., Kawamoto, M., Ichiki, Y., Nakamura, S., Matsuo, H., et al. (1993) Adrenomedullin: A Novel Hypotensive Peptide Isolated from Human Pheochromocytoma. Biochemical and Biophysical Research Communications, 192, 553-560.
https://doi.org/10.1006/bbrc.1993.1451
[25]  Parameswaran, N. and Spielman, W.S. (2006) RAMPs: The Past, Present and Future. Trends in Biochemical Sciences, 31, 631-638.
https://doi.org/10.1016/j.tibs.2006.09.006
[26]  Mclatchie, L.M., Fraser, N.J., Main, M.J., Wise, A., Brown, J., Thompson, N., et al. (1998) RAMPs Regulate the Transport and Ligand Specificity of the Calcitonin-Receptor-Like Receptor. Nature, 393, 333-339.
https://doi.org/10.1038/30666
[27]  Abe, M., Sata, M., Nishimatsu, H., Nagata, D., Suzuki, E., Terauchi, Y., et al. (2003) Adrenomedullin Augments Collateral Development in Response to Acute Ischemia. Biochemical and Biophysical Research Communications, 306, 10-15.
https://doi.org/10.1016/S0006-291X(03)00903-3
[28]  Brain, S.D. and Grant, A.D. (2004) Vascular Actions of Calcitonin Gene-Related Peptide and Adrenomedullin. Physiological Reviews, 84, 903-934.
https://doi.org/10.1152/physrev.00037.2003
[29]  Kato, J., Tsuruda, T., Kita, T., Kitamura, K. and Eto, T. (2005) Adrenomedullin: A Protective Factor for Blood Vessels. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 2480-2487.
https://doi.org/10.1161/01.ATV.0000184759.91369.f8
[30]  Nagaya, N., Nishikimi, T., Yoshihara, F., Horio, T., Morimoto, A. and Kangawa, K. (2000) Cardiac Adrenomedullin Gene Expression and Peptide Accumulation after Acute Myocardial Infarction in Rats. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 278, R1019-R10226.
https://doi.org/10.1152/ajpregu.2000.278.4.R1019
[31]  Nagaya, N., Mori, H., Murakami, S., Kangawa, K. and Kitamura, S. (2005) Adrenomedullin: Angiogenesis and Gene Therapy. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 288, R1432-R1437.
https://doi.org/10.1152/ajpregu.00662.2004
[32]  Nishimatsu, H., Hirata, Y., Shindo, T., Kurihara, H., Kakoki, M., Nagata, D., et al. (2002) Role of Endogenous Adrenomedullin in the Regulation of Vascular Tone and Ischemic Renal Injury: Studies on Transgenic/Knockout Mice of Adrenomedullin Gene. Circulation Research, 90, 657-663.
https://doi.org/10.1161/01.RES.0000013697.55301.E7
[33]  Iimuro, S., Shindo, T., Moriyama, N., Amaki, T., Niu, P., Takeda, N., et al. (2004) Angiogenic Effects of Adrenomedullin in Ischemia and Tumor Growth. Circulation Research, 95, 415-423.
https://doi.org/10.1161/01.RES.0000138018.61065.d1
[34]  Hojo, Y., Ikeda, U., Katsuki, T.A. and Shimada, K. (2000) Decreased Adrenomedullin Production in the Coronary Circulation of Patients with Coronary Artery Disease. Heart, 84, Article 88.
https://doi.org/10.1136/heart.84.1.88
[35]  Furuhashi, M. and Hotamisligil, G.S. (2008) Fatty Acid-Binding Proteins: Role in Metabolic Diseases and Potential as Drug Targets. Nature Reviews Drug Discovery, 7, 489-503.
https://doi.org/10.1038/nrd2589
[36]  Babaev, V.R., Runner, R.P., Fan, D., Ding, L., Zhang, Y., Tao, H., et al. (2011) Macrophage Mal1 Deficiency Suppresses Atherosclerosis in Low-Density Lipoprotein Receptor-Null Mice by Activating Peroxisome Proliferator-Activated Receptor-Gamma-Regulated Genes. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1283-1290.
https://doi.org/10.1161/ATVBAHA.111.225839
[37]  Furuhashi, M., Ogura, M., Matsumoto, M., Yuda, S., Muranaka, A., Kawamukai, M., et al. (2017) Serum FABP5 Concentration Is a Potential Biomarker for Residual Risk of Atherosclerosis in Relation to Cholesterol Efflux from Macrophages. Scientific Reports, 7, Article No. 217.
https://doi.org/10.1038/s41598-017-00177-w
[38]  Umbarawan, Y., Enoura, A., Ogura, H., Sato, T., Horikawa, M., Ishii, T., et al. (2021) FABP5 Is a Sensitive Marker for Lipid-Rich Macrophages in the Luminal Side of Atherosclerotic Lesions. International Heart Journal, 62, 666-676.
https://doi.org/10.1536/ihj.20-676
[39]  Yu, C.W., Liang, X., Lipsky, S., Karaaslan, C., Kozakewich, H., Hotamisligil, G.S., et al. (2016) Dual Role of Fatty Acid-Binding Protein 5 on Endothelial Cell Fate: A Potential Link Between Lipid Metabolism and Angiogenic Responses. Angiogenesis, 19, 95-106.
https://doi.org/10.1007/s10456-015-9491-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133