|
Material Sciences 2024
热电材料的分类及热电性能
|
Abstract:
热电材料作为一种可以将电能和热能相互转化的材料,怎样提高其热电转换效率是当下研究的热点。目前Bi2Te3基热电材料的ZT值在室温附近能达到1.3~1.4,还有一些热电材料的ZT值在高温下能达到2.0以上。但是要想实现热电材料更广泛的应用,必须要寻找在室温条件下热电性能更高的材料。目前常用的提高材料热电性能的方法主要有是通过掺杂和能带工程调控载流子浓度、通过纳米化技术降低材料维度和寻找高性能热电材料。本文主要介绍了提高合金型热电材料Bi2Te3、新型热电材料方钴矿和氧化物热电材料热电性能的方法,这些材料的热电性能以及热电材料的应用。
Thermoelectric materials, as a kind of materials that can convert electrical energy and thermal energy into each other, how to improve the thermoelectric conversion efficiency of thermoelectric materials is a hot topic in current research. At present, the ZT value of Bi2Te3-based thermoelectric materials can reach 1.3~1.4 near room temperature, and the ZT value of some thermoelectric materials can reach more than 2.0 at high temperature. However, in order to achieve a wider range of applications for thermoelectric materials, it is necessary to find materials with higher thermoelectric properties at room temperature. At present, the commonly used methods to improve the thermoelectric properties of materials mainly include regulating the carrier concentration through doping and band engineering, reducing the dimension of materials through nanotechnology, and finding high-performance thermoelectric materials. In this paper, we mainly introduce the methods to improve the thermoelectric properties of alloy-type thermoelectric materials Bi2Te3, new thermoelectric materials galena and oxide thermoelectric materials, the thermoelectric properties of these materials, and the application of thermoelectric materials.
[1] | Yang, F., Wu, J., Suwardi, A., Zhao, Y., Liang, B., Jiang, J., et al. (2020) Gate‐Tunable Polar Optical Phonon to Piezoelectric Scattering in Few‐Layer Bi2O2Se for High‐Performance Thermoelectrics. Advanced Materials, 33, Article ID: 2004786. https://doi.org/10.1002/adma.202004786 |
[2] | 吴国强, 胡剑峰, 罗鹏飞, 等. 低晶格热导率热电材料[J]. 自然杂志, 2019, 41(6): 444-452. |
[3] | 沈家骏, 方腾, 傅铁铮, 等. 热电材料中的晶格热导率[J]. 无机材料学报, 2019, 34(3): 260-268. |
[4] | 李彩云, 何文科, 王东洋, 等. 通过插层Cu实现SnSe2的高效热电性能[J]. 物理学报, 2021, 70(20): 368-376. |
[5] | Qin, B., Wang, D., He, W., Zhang, Y., Wu, H., Pennycook, S.J., et al. (2018) Realizing High Thermoelectric Performance in p-Type SnSe through Crystal Structure Modification. Journal of the American Chemical Society, 141, 1141-1149. https://doi.org/10.1021/jacs.8b12450 |
[6] | Rowe, D.M. (1995) CRC Handbook of Thermoelectrics. CRC, 407-440. |
[7] | Hicks, L.D. and Dresselhaus, M.S. (1993) Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit. Physical Review B, 47, 12727-12731. https://doi.org/10.1103/physrevb.47.12727 |
[8] | He, J. and Tritt, T.M. (2017) Advances in Thermoelectric Materials Research: Looking Back and Moving Forward. Science, 357, eaak9997. https://doi.org/10.1126/science.aak9997 |
[9] | 牛厂磊, 唐显, 李鑫. 碲化铋热电材料研究进展评述[J]. 中国陶瓷, 2019, 55(1): 1-4+9. |
[10] | 唐晶晶, 孙彩云, 丛大龙, 等. 碲化铋热电材料掺杂研究进展[J]. 半导体技术, 2022, 47(11): 845-853, 872. |
[11] | 于凤荣, 陈思彤, 刘文鑫, 等. Bi2Te3热电材料的研究现状与发展趋势[J]. 燕山大学学报, 2017, 41(3): 204-218. |
[12] | Wu, F., Song, H., Jia, J. and Hu, X. (2013) Effects of Ce, Y, and Sm Doping on the Thermoelectric Properties of Bi2Te3 Alloy. Progress in Natural Science: Materials International, 23, 408-412. https://doi.org/10.1016/j.pnsc.2013.06.007 |
[13] | Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., et al. (2008) Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States. Science, 321, 554-557. https://doi.org/10.1126/science.1159725 |
[14] | Venkatasubramanian, R., Siivola, E., Colpitts, T. and O’Quinn, B. (2001) Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit. Nature, 413, 597-602. https://doi.org/10.1038/35098012 |
[15] | Lou, L., Yang, J., Zhu, Y., Liang, H., Zhang, Y., Feng, J., et al. (2022) Tunable Electrical Conductivity and Simultaneously Enhanced Thermoelectric and Mechanical Properties in N‐Type Bi2Te3. Advanced Science, 9, Article ID: 2203250. https://doi.org/10.1002/advs.202203250 |
[16] | Park, K.H., Mohamed, M., Aksamija, Z. and Ravaioli, U. (2015) Phonon Scattering Due to van der Waals Forces in the Lattice Thermal Conductivity of Bi2Te3 Thin Films. Journal of Applied Physics, 117, Article ID: 015103. https://doi.org/10.1063/1.4905294 |
[17] | 刘志愿, 管希成, 李周, 等. Bi2Te3基热电材料中的声子工程[J]. 硅酸盐学报, 2024, 52(1): 203-217. |
[18] | Li, D., Gong, Y., Chen, Y., Lin, J., Khan, Q., Zhang, Y., et al. (2020) Recent Progress of Two-Dimensional Thermoelectric Materials. Nano-Micro Letters, 12, Article No. 36. https://doi.org/10.1007/s40820-020-0374-x |
[19] | Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., et al. (2008) High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science, 320, 634-638. https://doi.org/10.1126/science.1156446 |
[20] | Yu, Z., Zhang, Q., Li, L., Chen, Q., Niu, X., Liu, J., et al. (2010) Highly Flexible Silver Nanowire Electrodes for Shape‐Memory Polymer Light‐Emitting Diodes. Advanced Materials, 23, 664-668. https://doi.org/10.1002/adma.201003398 |
[21] | 蒋祥倩, 李玲, 班春成, 等. 碲化铋基低维氮化硼纳米复合材料的制备及其热电性能研究[J]. 黑龙江大学工程学报, 2021, 12(3): 155-163. |
[22] | 徐庆, 赵琨鹏, 魏天然, 等. 热电材料的研究现状与未来展望[J]. 硅酸盐学报, 2021, 49(7): 1296-1305. |
[23] | Jeitschko, W., Foecker, A.J., Paschke, D., Dewalsky, M.V., Evers, C.B.H., Künnen, B., et al. (2000) Crystal Structure and Properties of Some Filled and Unfilled Skutterudites: GdFe4P12, SmFe4P12, NdFe4As12, Eu0.54Co4Sb12, Fe0.5Ni0.5P3, CoP3, and NiP3. Zeitschrift für Anorganische und Allgemeine Chemie, 626, 1112-1120. https://doi.org/10.1002/(sici)1521-3749(200005)626:5<1112::aid-zaac1112>3.0.co;2-e |
[24] | 卫群, 刘丹敏, 张忻, 等. 方钴矿热电材料的研究进展[J]. 稀有金属, 2006(4): 517-522. |
[25] | 席丽丽, 杨炯, 史迅, 等. 填充方钴矿热电材料: 从单填到多填[J]. 中国科学: 物理学力学天文学, 2011, 41(6): 706-728. |
[26] | 王超, 张蕊, 姜晶, 等. CoSb3基方钴矿热电材料综述[J]. 电子科技大学学报, 2020, 49(6): 934-941. |
[27] | Jiang, Y., Jia, X. and Ma, H. (2017) The Thermoelectric Properties of CoSb3 Compound Doped with Te and Sn Synthesized at Different Pressure. Modern Physics Letters B, 31, Article ID: 1750261. https://doi.org/10.1142/s021798491750261x |
[28] | Su, X., Li, H., Yan, Y., Wang, G., Chi, H., Zhou, X., et al. (2012) Microstructure and Thermoelectric Properties of CoSb2.75Ge0.25?xTex Prepared by Rapid Solidification. Acta Materialia, 60, 3536-3544. https://doi.org/10.1016/j.actamat.2012.02.034 |
[29] | Chen, L.D. (2002) Recent Advances in Filled Skutterudite Systems. 21st IEEE International Conference on Thermoelectrics, Long Beach, 25-29 August 2002, 42-47. |
[30] | Rogl, G., Grytsiv, A., Rogl, P., Peranio, N., Bauer, E., Zehetbauer, M., et al. (2014) N-Type Skutterudites (R, Ba, Yb)yCo4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) Approaching ZT ≈ 2.0. Acta Materialia, 63, 30-43. https://doi.org/10.1016/j.actamat.2013.09.039 |
[31] | Terasaki, I., Sasago, Y. and Uchinokura, K. (1997) Large Thermoelectric Power in NaCo2O4 Single Crystals. Physical Review B, 56, R12685-R12687. https://doi.org/10.1103/physrevb.56.r12685 |
[32] | Wang, H.C., Wang, C.L., Su, W.B., Liu, J., Sun, Y., Peng, H., et al. (2010) Doping Effect of La and Dy on the Thermoelectric Properties of SrTiO3. Journal of the American Ceramic Society, 94, 838-842. https://doi.org/10.1111/j.1551-2916.2010.04185.x |
[33] | Wang, Y., Sui, Y. and Su, W. (2008) High Temperature Thermoelectric Characteristics of Ca0.9R0.1MnO3 (R = La, Pr, …, Yb). Journal of Applied Physics, 104, Article ID: 093703. https://doi.org/10.1063/1.3003065 |
[34] | 徐飞, 李安敏, 程晓鹏, 等. 氧化物热电材料研究进展[J]. 功能材料, 2019, 50(4): 4038-4048. |
[35] | Wu, Z.-H., Xie, H.-Q. and Zeng, Q.-F. (2013) Preparation and Thermoelectric Properties of Ag-ZnO Nanocomposites Synthesized by Means of Sol-Gel. Acta Physica Sinica, 62, Article ID: 097301. https://doi.org/10.7498/aps.62.097301 |