全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Finance  2024 

基于KMV模型的汽车供应链金融违约风险测度
Measurement of Financial Default Risk of Automobile Supply Chain Based on KMV Model

DOI: 10.12677/fin.2024.144150, PP. 1456-1466

Keywords: 违约风险,KMV模型,供应链金融模型
Default Risk
, KMV Model, Supply Chain Finance Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

中小企业融资是现实的一大难题。供应链金融为缓解这一问题提供了新途径,但风险问题也不容忽视。当前,中国供应链金融风险量化识别体系尚不完善,商业银行难以准确评估风险。本文基于中国汽车工业现状,运用修正的KMV模型,选取9家代表性企业2022年财务信息,计算了核心制造商、零部件供应商与经销商的违约距离与概率。研究结果显示,修正后的模型能有效度量中国企业的信用风险,为商业银行的风险识别提供支持,对供应链金融的健康发展有积极意义。这一研究不仅丰富了风险管理理论,也为供应链金融的实践提供了有价值的参考。
Financing for small and medium-sized enterprises is a major challenge in reality. Supply chain finance provides new ways to alleviate this problem, but risk issues cannot be ignored. Currently, the quantitative identification system for supply chain finance risks in China is not yet perfect, and commercial banks find it difficult to accurately assess risks. This paper, grounded in the current state of China’s automotive industry and informed by supply chain finance theory, selects the financial information of nine representative enterprises from 2022, including core manufacturers, component suppliers, and dealers. Through the modification of the classical KMV model, the paper aims to make its parameters more applicable to the Chinese market. Subsequently, the financial data of these nine enterprises are incorporated into the model to calculate the default distances and probabilities of core manufacturers, component suppliers, and dealers. The research findings indicate that the modified KMV model can effectively measure the credit risks of individual financing enterprises in China, providing strong support for commercial banks in risk identification and facilitating the healthy development of supply chain finance. This study not only enriches the theory of supply chain financial risk management but also provides valuable references for practical applications.

References

[1]  朱琳琪. 我国汽车行业的供应链金融信用风险实证研究[D]: [硕士学位论文]. 济南: 山东大学经济学院, 2020: 7-13.
[2]  闫俊宏, 许祥秦. 基于供应链金融的中小企业融资模式分析[J]. 上海金融, 2007(2): 14-16.
[3]  熊熊, 马佳, 赵文杰, 等. 基于KMV模型的汽车供应链金融信用风险研究[J]. 南开管理评论, 2009(4): 92-98. 106.
[4]  赵荣, 谭章禄. 供应链信用风险传导机制研究[D]: [博士学位论文]. 北京: 中国矿业大学经济管理学院, 2011: 127-131.
[5]  蒋正权, 张能福. KMV模型的实证研究[J]. 统计与决策, 2008(9): 67-69.
[6]  张玲, 刘澄. KMV模型在中国应用的参数修正[J]. 海南金融, 2013(10): 47-50.
[7]  陈昕, 史小坤. 商业银行信用风险管理的KMV模型及其修正[J]. 南京财经大学学报, 2010(4): 109-111.
[8]  祝锡永, 赵甜甜. 基于KMV模型的供应链金融信用风险评价指标体系的构建[J]. 物流工程与管理, 2022, 44(10): 49-51.
[9]  Hand, D.J. and Henley, W.E. (1997) Statistical Classification Methods in Consumer Credit Scoring: A Review. Journal of the Royal Statistical Society, 160, 523-541.
https://doi.org/10.1111/j.1467-985X.1997.00078.x
[10]  Kurbat, M. and Korablev, I. (2002) Methodology for Testing the Level of the EDFTM Credit Measure.
[11]  Hofmann, E. (2009) Inventory Financing in Supply Chains: A Logistics Service Provider-Approach. International Journal of Physical Distribution & Logistics Management, 9, 716-740.
https://doi.org/10.1108/09600030911008175
[12]  Duffle, D., Saita, L. and Wang, K. (2014) Multi-Period Corporate Default Prediction with Stochastic Covariates. SSRN Electronic Journal, 83, 635-666.
https://doi.org/10.1016/j.jfineco.2005.10.011
[13]  Aberdeen Group (2007) The 2008 State of the Market in Supply Chain Finance. Report, 1-26.
[14]  Agrawal, D., Bharath, S.T. and Viswanathan, S. (2013) Technological Change and Stock Return Volatility: Evidence from E-Commerce Adoptions. SSRN Electronic Journal, 8, 123-126.
[15]  孙伟, 王宇. KMV模型在商业银行信用风险管理下的实证研究[J]. 科技与管理, 2016(3): 42-46.
[16]  张建同, 张敏, 郭卓琦. 基于修正KMV模型的汽车供应链金融风险分析[J]. 工业工程与管理, 2019, 24(1): 128-135.
[17]  梁世栋, 郭仌, 李勇, 方兆本. 信用风险模型比较分析[J]. 中国管理科学, 2002, 10(1): 20-22.
[18]  谢邦昌, 朱世武, 等. 我国上市公司信用风险度量模型的选择[J]. 经济学动态, 2008(5): 55-58.
[19]  耿庆峰, 黄志刚. 基于比较视角的我国股票市场波动ARCH效应研究[J]. 福州大学学报, 2013, 27(2): 47-51.
[20]  姚德权, 张宏亮, 黄学军. 基于变结构KMV模型的商业银行风险承担度量研究[J]. 中国软科学, 2015(11): 110-112.
[21]  张敏. 基于修正KMV模型与Copula函数的汽车供应链金融风险研究[D]: [硕士学位论文]. 上海: 同济大学, 2020: 22-27.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133