全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

神经干细胞移植在神经系统疾病中的研究进展
Research Progress of Neural Stem Cell Transplantation in Neurodegenerative Diseases

DOI: 10.12677/acm.2024.1482194, PP. 148-154

Keywords: 神经干细胞,神经干细胞移植,神经退行性疾病,治疗作用
Neural Stem Cells
, Neural Stem Cell Transplantation, Neurodegenerative Diseases, Therapeutic Effect

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统治疗方法虽然能延缓该类疾病的进展,但局限性较为明显。神经退行性疾病通常是由于神经细胞的消亡导致的,神经干细胞具有较强的自我更新能力,可修复受损的神经,移植神经干细胞为神经退行性疾病的治疗提供新的策略。本文主要对神经干细胞移植在脑卒中、帕金森、阿尔兹海默症、渐冻人症、脊髓损伤等神经退行性疾病中的治疗作用的研究进展及热点问题展开叙述。
Although traditional treatment can delay the progress of this disease, its limitations are obvious. Neurodegenerative diseases are usually caused by the death of nerve cells. Neural stem cells have strong self-renewal ability and can repair damaged nerves. Transplanting neural stem cells provides a new strategy for the treatment of neurodegenerative diseases. This article mainly describes the research progress and hot topics on the therapeutic effects of neural stem cell transplantation in neurodegenerative diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, progressive freezing, and spinal cord injury.

References

[1]  Hayashi, Y., Lin, H., Lee, C. and Tsai, K. (2020) Effects of Neural Stem Cell Transplantation in Alzheimer’s Disease Models. Journal of Biomedical Science, 27, Article No. 29.
https://doi.org/10.1186/s12929-020-0622-x
[2]  Gonzalez, R., H. Hamblin, M. and Lee, J. (2016) Neural Stem Cell Transplantation and CNS Diseases. CNS & Neurological Disorders-Drug Targets, 15, 881-886.
https://doi.org/10.2174/1871527315666160815164247
[3]  De Gioia, R., Biella, F., Citterio, G., Rizzo, F., Abati, E., Nizzardo, M., et al. (2020) Neural Stem Cell Transplantation for Neurodegenerative Diseases. International Journal of Molecular Sciences, 21, Article 3103.
https://doi.org/10.3390/ijms21093103
[4]  Gage, F.H. (2000) Mammalian Neural Stem Cells. Science, 287, 1433-1438.
https://doi.org/10.1126/science.287.5457.1433
[5]  Baker, E.W., Kinder, H.A. and West, F.D. (2019) Neural Stem Cell Therapy for Stroke: A Multimechanistic Approach to Restoring Neurological Function. Brain and Behavior, 9, e01214.
https://doi.org/10.1002/brb3.1214
[6]  Chiu, I., Hsu, Y., Chen, S. and Wang, D. (2013) Stem Cell-Based Therapy in Neural Repair. Biomedical Journal, 36, 98-105.
https://doi.org/10.4103/2319-4170.113226
[7]  Liu, G., David, B.T., Trawczynski, M. and Fessler, R.G. (2019) Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Reviews and Reports, 16, 3-32.
https://doi.org/10.1007/s12015-019-09935-x
[8]  Bain, G., Kitchens, D., Yao, M., Huettner, J.E. and Gottlieb, D.I. (1995) Embryonic Stem Cells Express Neuronal Properties in vitro. Developmental Biology, 168, 342-357.
https://doi.org/10.1006/dbio.1995.1085
[9]  Zhang, J., Yu, X., Ma, B., Yu, W., Zhang, A., Huang, G., et al. (2006) Neural Differentiation of Embryonic Stem Cells Induced by Conditioned Medium from Neural Stem Cell. NeuroReport, 17, 981-986.
https://doi.org/10.1097/01.wnr.0000227977.60271.ca
[10]  Sathananthan, A.H. (2011) Neural Stem Cells in Neurospheres, Embryoid Bodies, and Central Nervous System of Human Embryos. Microscopy and Microanalysis, 17, 520-527.
https://doi.org/10.1017/s1431927611000584
[11]  Rhee, Y., Ko, J., Chang, M., Yi, S., Kim, D., Kim, C., et al. (2011) Protein-Based Human iPS Cells Efficiently Generate Functional Dopamine Neurons and Can Treat a Rat Model of Parkinson Disease. Journal of Clinical Investigation, 121, 2326-2335.
https://doi.org/10.1172/jci45794
[12]  Alvarez-Buylla, A., García-Verdugo, J.M. and Tramontin, A.D. (2001) A Unified Hypothesis on the Lineage of Neural Stem Cells. Nature Reviews Neuroscience, 2, 287-293.
https://doi.org/10.1038/35067582
[13]  Terskikh, A.V., Bryant, P.J. and Schwartz, P.H. (2006) Mammalian Stem Cells. Pediatric Research, 59, 13R-20R.
https://doi.org/10.1203/01.pdr.0000205154.86517.2a
[14]  Homayouni Moghadam, F., Sadeghi-Zadeh, M., Alizadeh-Shoorjestan, B., Dehghani-Varnamkhasti, R., Narimani, S., Darabi, L., et al. (2018) Isolation and Culture of Embryonic Mouse Neural Stem Cells. Journal of Visualized Experiments.
https://doi.org/10.3791/58874-v
[15]  Deshpande, K., Saatian, B., Martirosian, V., Lin, M., Julian, A. and Neman, J. (2019) Isolation of Neural Stem Cells from Whole Brain Tissues of Adult Mice. Current Protocols in Stem Cell Biology, 49, e80.
https://doi.org/10.1002/cpsc.80
[16]  Zhang, M., Lin, Y., Sun, Y.J., Zhu, S., Zheng, J., Liu, K., et al. (2016) Pharmacological Reprogramming of Fibroblasts into Neural Stem Cells by Signaling-Directed Transcriptional Activation. Cell Stem Cell, 18, 653-667.
https://doi.org/10.1016/j.stem.2016.03.020
[17]  Hermann, A., Liebau, S., Gastl, R., Fickert, S., Habisch, H., Fiedler, J., et al. (2006) Comparative Analysis of Neuroectodermal Differentiation Capacity of Human Bone Marrow Stromal Cells Using Various Conversion Protocols. Journal of Neuroscience Research, 83, 1502-1514.
https://doi.org/10.1002/jnr.20840
[18]  Satake, K., Lou, J. and Lenke, L.G. (2004) Migration of Mesenchymal Stem Cells through Cerebrospinal Fluid into Injured Spinal Cord Tissue. Spine, 29, 1971-1979.
https://doi.org/10.1097/01.brs.0000138273.02820.0a
[19]  Campbell, B.C.V. and Khatri, P. (2020) Stroke. The Lancet, 396, 129-142.
https://doi.org/10.1016/s0140-6736(20)31179-x
[20]  Boese, A.C., Le, Q.E., Pham, D., Hamblin, M.H. and Lee, J. (2018) Neural Stem Cell Therapy for Subacute and Chronic Ischemic Stroke. Stem Cell Research & Therapy, 9, Article No. 154.
https://doi.org/10.1186/s13287-018-0913-2
[21]  Huang, L. and Zhang, L. (2019) Neural Stem Cell Therapies and Hypoxic-Ischemic Brain Injury. Progress in Neurobiology, 173, 1-17.
https://doi.org/10.1016/j.pneurobio.2018.05.004
[22]  Horie, N., Hiu, T. and Nagata, I. (2015) Stem Cell Transplantation Enhances Endogenous Brain Repair after Experimental Stroke. Neurologia Medico-Chirurgica, 55, 107-112.
https://doi.org/10.2176/nmc.ra.2014-0271
[23]  Martino, G. and Pluchino, S. (2006) The Therapeutic Potential of Neural Stem Cells. Nature Reviews Neuroscience, 7, 395-406.
https://doi.org/10.1038/nrn1908
[24]  Ceto, S., Sekiguchi, K.J., Takashima, Y., Nimmerjahn, A. and Tuszynski, M.H. (2020) Neural Stem Cell Grafts Form Extensive Synaptic Networks That Integrate with Host Circuits after Spinal Cord Injury. Cell Stem Cell, 27, 430-440.E5.
https://doi.org/10.1016/j.stem.2020.07.007
[25]  Zuo, F., Bao, X., Sun, X., Wu, J., Bai, Q., Chen, G., et al. (2015) Transplantation of Human Neural Stem Cells in a Parkinsonian Model Exerts Neuroprotection via Regulation of the Host Microenvironment. International Journal of Molecular Sciences, 16, 26473-26492.
https://doi.org/10.3390/ijms161125966
[26]  Cerri, S., Greco, R., Levandis, G., Ghezzi, C., Mangione, A.S., Fuzzati-Armentero, M., et al. (2015) Intracarotid Infusion of Mesenchymal Stem Cells in an Animal Model of Parkinson’s Disease, Focusing on Cell Distribution and Neuroprotective and Behavioral Effects. Stem Cells Translational Medicine, 4, 1073-1085.
https://doi.org/10.5966/sctm.2015-0023
[27]  Teixeira, F.G., Carvalho, M.M., Panchalingam, K.M., Rodrigues, A.J., Mendes-Pinheiro, B., Anjo, S., et al. (2016) Impact of the Secretome of Human Mesenchymal Stem Cells on Brain Structure and Animal Behavior in a Rat Model of Parkinson’s Disease. Stem Cells Translational Medicine, 6, 634-646.
https://doi.org/10.5966/sctm.2016-0071
[28]  Safari, M., Jafari, B., Zarbakhsh, S., Sameni, H., Vafaei, A.A., Mohammadi, N.K., et al. (2016) G-CSF for Mobilizing Transplanted Bone Marrow Stem Cells in Rat Model of Parkinson’s Disease. Iranian Journal of Basic Medical Sciences, 19, 1318-1324.
[29]  Chen, N., Wei, F., Wang, L., Cui, S., Wan, Y. and Liu, S. (2016) Tumor Necrosis Factor Alpha Induces Neural Stem Cell Apoptosis through Activating P38 MAPK Pathway. Neurochemical Research, 41, 3052-3062.
https://doi.org/10.1007/s11064-016-2024-8
[30]  Wang, Y., Zhou, K., Li, T., Xu, Y., Xie, C., Sun, Y., et al. (2017) Inhibition of Autophagy Prevents Irradiation-Induced Neural Stem and Progenitor Cell Death in the Juvenile Mouse Brain. Cell Death & Disease, 8, e2694.
https://doi.org/10.1038/cddis.2017.120
[31]  任安艳, 葛汝丽, 王洪财. 基因修饰的神经干细胞与帕金森病[J]. 国际神经病学神经外科学杂志, 2022, 49(1): 68-72.
[32]  Quadri, S.A., Farooqui, M., Ikram, A., Zafar, A., Khan, M.A., Suriya, S.S., et al. (2018) Recent Update on Basic Mechanisms of Spinal Cord Injury. Neurosurgical Review, 43, 425-441.
https://doi.org/10.1007/s10143-018-1008-3
[33]  Dulin, J.N., Adler, A.F., Kumamaru, H., Poplawski, G.H.D., Lee-Kubli, C., Strobl, H., et al. (2018) Injured Adult Motor and Sensory Axons Regenerate into Appropriate Organotypic Domains of Neural Progenitor Grafts. Nature Communications, 9, Article No. 84.
https://doi.org/10.1038/s41467-017-02613-x
[34]  Koffler, J., Zhu, W., Qu, X., Platoshyn, O., Dulin, J.N., Brock, J., et al. (2019) Biomimetic 3D-Printed Scaffolds for Spinal Cord Injury Repair. Nature Medicine, 25, 263-269.
https://doi.org/10.1038/s41591-018-0296-z
[35]  Lien, B.V., Tuszynski, M.H. and Lu, P. (2019) Astrocytes Migrate from Human Neural Stem Cell Grafts and Functionally Integrate into the Injured Rat Spinal Cord. Experimental Neurology, 314, 46-57.
https://doi.org/10.1016/j.expneurol.2019.01.006
[36]  Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C.E., et al. (2021) Alzheimer’s Disease. The Lancet, 397, 1577-1590.
https://doi.org/10.1016/s0140-6736(20)32205-4
[37]  Auld, D.S., Kornecook, T.J., Bastianetto, S. and Quirion, R. (2002) Alzheimer’s Disease and the Basal Forebrain Cholinergic System: Relations to β-Amyloid Peptides, Cognition, and Treatment Strategies. Progress in Neurobiology, 68, 209-245.
https://doi.org/10.1016/s0301-0082(02)00079-5
[38]  Scheltens, P., Blennow, K., Breteler, M.M.B., de Strooper, B., Frisoni, G.B., Salloway, S., et al. (2016) Alzheimer’s Disease. The Lancet, 388, 505-517.
https://doi.org/10.1016/s0140-6736(15)01124-1
[39]  Tang, J. (2012) How Close Is the Stem Cell Cure to the Alzheimer’s Disease: Future and Beyond? Neural Regeneration Research, 7, 66-71.
[40]  Mucke, L. (2009) Alzheimer’s Disease. Nature, 461, 895-897.
https://doi.org/10.1038/461895a
[41]  Marsh, S.E. and Blurton-Jones, M. (2017) Neural Stem Cell Therapy for Neurodegenerative Disorders: The Role of Neurotrophic Support. Neurochemistry International, 106, 94-100.
https://doi.org/10.1016/j.neuint.2017.02.006
[42]  Titova, N., Padmakumar, C., Lewis, S.J.G. and Chaudhuri, K.R. (2016) Parkinson’s: A Syndrome Rather than a Disease? Journal of Neural Transmission, 124, 907-914.
https://doi.org/10.1007/s00702-016-1667-6
[43]  Grad, L.I., Rouleau, G.A., Ravits, J. and Cashman, N.R. (2016) Clinical Spectrum of Amyotrophic Lateral Sclerosis (ALS). Cold Spring Harbor Perspectives in Medicine, 7, a024117.
https://doi.org/10.1101/cshperspect.a024117
[44]  Xu, R. and Yuan, M. (2021) Considerations on the Concept, Definition, and Diagnosis of Amyotrophic Lateral Sclerosis. Neural Regeneration Research, 16, 1723-1729.
https://doi.org/10.4103/1673-5374.306065
[45]  Pramanik, S., Sulistio, Y.A. and Heese, K. (2017) Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Molecular Neurobiology, 54, 7401-7459.
https://doi.org/10.1007/s12035-016-0214-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133