全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Geospatial and Statistical Analysis of Land Surface Temperature and Land Surface Characteristics of Jaipur and Ahmedabad Cities of India

DOI: 10.4236/gep.2024.128001, PP. 1-19

Keywords: LST, UHI, Index-Based Approach, Built-Up, Remote Sensing, GIS

Full-Text   Cite this paper   Add to My Lib

Abstract:

Land surface temperature (LST) is a phenomenon that significantly affects the environment, the cities’ liveability, and the citizens’ well-being. This Study aims to perform a comparative study of the microclimate and Surface Urban Heat Island (SUHI) phenomenon of two metropolitan cities of India, i.e. Jaipur and Ahmedabad, using MODIS Satellite data, whereas Landsat Data was used to analyse the Land Surface Characteristics by an index-based approach. The Study’s findings reveal that Ahmedabad has 35.53 per cent of the total area classified as having a low potential, and 13.55 per cent is designated as a high potential LST zone. Meanwhile, in Jaipur, 30.45 per cent of the city’s total area is identified as a low potential LST zone and 12.69 per cent as a high potential LST zone. This Study highlights the importance of mitigating the UHI phenomenon in urban centres for the overall well-being of city dwellers. It will help policymakers and stakeholders comprehend plans and take initiatives to minimise the effects of the UHI phenomenon on rapidly growing cities.

References

[1]  Carlson, T. N., & Traci Arthur, S. (2000). The Impact of Land Use—Land Cover Changes Due to Urbanization on Surface Microclimate and Hydrology: A Satellite Perspective. Global and Planetary Change, 25, 49-65.
https://doi.org/10.1016/s0921-8181(00)00021-7
[2]  Census of India (2011). Press Release: Rural-Urban Distribution of Population (Provisional). Press Information Bureau Website.
https://censusindia.gov.in/nada/index.php/catalog/42617
[3]  Chen, X., Zhao, H., Li, P., & Yin, Z. (2006). Remote Sensing Image-Based Analysis of the Relationship between Urban Heat Island and Land Use/Cover Changes. Remote Sensing of Environment, 104, 133-146.
https://doi.org/10.1016/j.rse.2005.11.016
[4]  Chudnovsky, A., Ben-Dor, E., & Saaroni, H. (2004). Diurnal Thermal Behavior of Selected Urban Objects Using Remote Sensing Measurements. Energy and Buildings, 36, 1063-1074.
https://doi.org/10.1016/j.enbuild.2004.01.052
[5]  Desalegn, T., Cruz, F., Kindu, M., Turrión, M. B., & Gonzalo, J. (2014). Land-Use/Land-Cover (LULC) Change and Socioeconomic Conditions of Local Community in the Central Highlands of Ethiopia. International Journal of Sustainable Development & World Ecology, 21, 406-413.
https://doi.org/10.1080/13504509.2014.961181
[6]  Fashae, O. A., Adagbasa, E. G., Olusola, A. O., & Obateru, R. O. (2020). Land Use/Land Cover Change and Land Surface Temperature of Ibadan and Environs, Nigeria. Environmental Monitoring and Assessment, 192, Article No. 109.
https://doi.org/10.1007/s10661-019-8054-3
[7]  Fuentes, I., Fuster, R., Avilés, D., & Vervoort, W. (2021). Water Scarcity in Central Chile: The Effect of Climate and Land Cover Changes on Hydrologic Resources. Hydrological Sciences Journal, 66, 1028-1044.
https://doi.org/10.1080/02626667.2021.1903475
[8]  Gao, B. (1996). NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sensing of Environment, 58, 257-266.
https://doi.org/10.1016/s0034-4257(96)00067-3
[9]  Gupta, R. (2012). Temporal and Spatial Variations of Urban Heat Island Effect in Jaipur City Using Satellite Data. Environment and Urbanization ASIA, 3, 359-374.
https://doi.org/10.1177/0975425312473232
[10]  Gupta, R. K. (2024). Identifying Urban Hotspots and Cold Spots in Delhi Using the Biophysical Landscape Framework. Ecology, Economy and Society—The INSEE Journal, 7, 137-155.
https://doi.org/10.37773/ees.v7i1.954
[11]  Gupta, R., & Parashar, D. (2020). Estimation of Land Surface Temperature in the Urbanized Environment Using Multi-Resolution Satellite. Uttar Pradesh Geographical Journal, 25, 15-28.
[12]  Haffner, M. E. A., & Hulse, K. (2019). A Fresh Look at Contemporary Perspectives on Urban Housing Affordability. International Journal of Urban Sciences, 25, 59-79.
https://doi.org/10.1080/12265934.2019.1687320
[13]  Hassan, S. M., Edicha, J. A., & Kabiru, U. (2016). Analysis of the Pattern of Land Degradation in Okaba, Kogi State, Nigeria. Annals of the Social Science Academy of Nigeria, No. 20, 72-96.
https://doi.org/10.36108/ssan/1502.02.0140
[14]  He, Q., & Reith, A. (2023). A Study on the Impact of Green Infrastructure on Microclimate and Thermal Comfort. Pollack Periodica, 18, 42-48.
https://doi.org/10.1556/606.2022.00668
[15]  Huang, C., Kim, S., Song, K., Townshend, J. R. G., Davis, P., Altstatt, A. et al. (2009). Assessment of Paraguay’s Forest Cover Change Using Landsat Observations. Global and Planetary Change, 67, 1-12.
https://doi.org/10.1016/j.gloplacha.2008.12.009
[16]  Huang, X., Zhang, T., Yi, G., He, D., Zhou, X., Li, J. et al. (2019). Dynamic Changes of NDVI in the Growing Season of the Tibetan Plateau during the Past 17 Years and Its Response to Climate Change. International Journal of Environmental Research and Public Health, 16, Article No. 3452.
https://doi.org/10.3390/ijerph16183452
[17]  Jiang, J., & Tian, G. (2010). Analysis of the Impact of Land Use/Land Cover Change on Land Surface Temperature with Remote Sensing. Procedia Environmental Sciences, 2, 571-575.
https://doi.org/10.1016/j.proenv.2010.10.062
[18]  Li, H., Meier, F., Lee, X., Chakraborty, T., Liu, J., Schaap, M. et al. (2018). Interaction between Urban Heat Island and Urban Pollution Island during Summer in Berlin. Science of the Total Environment, 636, 818-828.
https://doi.org/10.1016/j.scitotenv.2018.04.254
[19]  Liu, L., & Zhang, Y. (2011). Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong. Remote Sensing, 3, 1535-1552.
https://doi.org/10.3390/rs3071535
[20]  Lo, C. P., & Quattrochi, D. A. (2003). Land-Use and Land-Cover Change, Urban Heat Island Phenomenon, and Health Implications. Photogrammetric Engineering & Remote Sensing, 69, 1053-1063.
https://doi.org/10.14358/pers.69.9.1053
[21]  Mao, D., Wang, Z., Luo, L., & Ren, C. (2012). Integrating AVHRR and MODIS Data to Monitor NDVI Changes and Their Relationships with Climatic Parameters in Northeast China. International Journal of Applied Earth Observation and Geoinformation, 18, 528-536.
https://doi.org/10.1016/j.jag.2011.10.007
[22]  Menzel, L., Koch, J., Onigkeit, J., & Schaldach, R. (2009). Modelling the Effects of Land-Use and Land-Cover Change on Water Availability in the Jordan River Region. Advances in Geosciences, 21, 73-80.
https://doi.org/10.5194/adgeo-21-73-2009
[23]  Mimbrero, M., Vlassova, L., Pérez-Cabello, F., Llovería, R., & García-Martín, A. (2014). Analysis of the Relationship between Land Surface Temperature and Wildfire Severity in a Series of Landsat Images. Remote Sensing, 6, 6136-6162.
https://doi.org/10.3390/rs6076136
[24]  Moisa, M. B., Dejene, I. N., Merga, B. B., & Gemeda, D. O. (2022). Impacts of Land Use/Land Cover Dynamics on Land Surface Temperature Using Geospatial Techniques in Anger River Sub-Basin, Western Ethiopia. Environmental Earth Sciences, 81, Article No. 99.
https://doi.org/10.1007/s12665-022-10221-2
[25]  Najafzadeh, F., Mohammadzadeh, A., Ghorbanian, A., & Jamali, S. (2021). Spatial and Temporal Analysis of Surface Urban Heat Island and Thermal Comfort Using Landsat Satellite Images between 1989 and 2019: A Case Study in Tehran. Remote Sensing, 13, Article No. 4469.
https://doi.org/10.3390/rs13214469
[26]  Nasir, M. J., Ahmad, W., Iqbal, J., Ahmad, B., Abdo, H. G., Hamdi, R. et al. (2022). Effect of the Urban Land Use Dynamics on Land Surface Temperature: A Case Study of Kohat City in Pakistan for the Period 1998-2018. Earth Systems and Environment, 6, 237-248.
https://doi.org/10.1007/s41748-022-00292-3
[27]  Park, J., Sim, W., Park, J., & Lee, J. (2019). Object-Based Land Cover Change Detection and Landscape Structure Analysis of Demilitarized Zone in Korea. Sensors and Materials, 31, 3733-3748.
https://doi.org/10.18494/sam.2019.2434
[28]  Piao, S., Wang, X., Ciais, P., Zhu, B., Wang, T., & Liu, J. (2011). Changes in Satellite-Derived Vegetation Growth Trend in Temperate and Boreal Eurasia from 1982 to 2006. Global Change Biology, 17, 3228-3239.
https://doi.org/10.1111/j.1365-2486.2011.02419.x
[29]  Rahman, A., Aggarwal, S. P., Netzband, M., & Fazal, S. (2011). Monitoring Urban Sprawl Using Remote Sensing and GIS Techniques of a Fast Growing Urban Centre, India. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4, 56-64.
https://doi.org/10.1109/jstars.2010.2084072
[30]  Reed, B. C., Brown, J. F., VanderZee, D., Loveland, T. R., Merchant, J. W., & Ohlen, D. O. (1994). Measuring Phenological Variability from Satellite Imagery. Journal of Vegetation Science, 5, 703-714.
https://doi.org/10.2307/3235884
[31]  Rendana, M., Idris, W. M. R., Rahim, S. A., Abdo, H. G., Almohamad, H., Al Dughairi, A. A. et al. (2023). Relationships between Land Use Types and Urban Heat Island Intensity in Hulu Langat District, Selangor, Malaysia. Ecological Processes, 12, Article No. 33.
https://doi.org/10.1186/s13717-023-00446-9
[32]  Sannigrahi, S., Rahmat, S., Chakraborti, S., Bhatt, S., & Jha, S. (2017). Changing Dynamics of Urban Biophysical Composition and Its Impact on Urban Heat Island Intensity and Thermal Characteristics: The Case of Hyderabad City, India. Modeling Earth Systems and Environment, 3, 647-667.
https://doi.org/10.1007/s40808-017-0324-x
[33]  Singh, R. B., & Grover, A. (2014). Remote Sensing of Urban Micro-Climate with Special Reference to Urban Heat Island Island Using Landsat Thermal Data. Geographia Polonica, 87, 555-5668.
https://doi.org/10.7163/gpol.2014.38
[34]  Sobrino, J. A., & Irakulis, I. (2020). A Methodology for Comparing the Surface Urban Heat Island in Selected Urban Agglomerations around the World from Sentinel-3 SLSTR Data. Remote Sensing, 12, Article No. 2052.
https://doi.org/10.3390/rs12122052
[35]  Spruce, J. P., Smoot, J. C., Ellis, J. T., Hilbert, K., & Swann, R. (2013). Geospatial Method for Computing Supplemental Multi-Decadal US Coastal Land Use and Land Cover Classification Products, Using Landsat Data and C-CAP Products. Geocarto International, 29, 470-485.
https://doi.org/10.1080/10106049.2013.798357
[36]  Subramani, T., & Vishnumanoj, V. (2014). Land Use and Land Cover Change Detection and Urban Sprawl Analysis of Panamarathupatti Lake, Salem. International Journal of Engineering Research and Applications, 2, 217-227.
[37]  Sun, Q., Wu, Z., & Tan, J. (2012). The Relationship between Land Surface Temperature and Land Use/land Cover in Guangzhou, China. Environmental Earth Sciences, 65, 1687-1694.
https://doi.org/10.1007/s12665-011-1145-2
[38]  Sundarakumar, K., Harika, M., Begum, S. A., Yamini, S., & Balakrishna, K. (2012). Land Use and Land Cover Change Detection and Urban Sprawl Analysis of Vijayawada City Using Multitemporal Landsat Data. International Journal of Engineering Science and Technology, 4, 170-178.
[39]  Swamy, G., Nagendra, S. M. S., & Schlink, U. (2017). Urban Heat Island (UHI) Influence on Secondary Pollutant Formation in a Tropical Humid Environment. Journal of the Air & Waste Management Association, 67, 1080-1091.
https://doi.org/10.1080/10962247.2017.1325417
[40]  Tang, C. F. (2022). A Study of the Urban Heat Island Effect in Guangzhou. IOP Conference Series: Earth and Environmental Science, 1087, Article ID: 012015.
https://doi.org/10.1088/1755-1315/1087/1/012015
[41]  Tao, Y., Lan, G., She, L., Pang, L., & Feng, K. (2018). Dynamic Monitoring of Land Cover in Dongting Lake Area between 1995-2015 with Landsat Imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3, 1651-1656.
https://doi.org/10.5194/isprs-archives-xlii-3-1651-2018
[42]  Toy, S., Yilmaz, S., & Yilmaz, H. (2007). Determination of Bioclimatic Comfort in Three Different Land Uses in the City of Erzurum, Turkey. Building and Environment, 42, 1315-1318.
https://doi.org/10.1016/j.buildenv.2005.10.031
[43]  Turner, B. L. I., Clark, W. C., & Kates, R. W. (1990). The Earth as Transformed by Human Action: Global and Regional Change in the Biosphere over the Past 300 Years. Cambridge University Press.
[44]  Valsson, S., & Bharat, A. (2009). Urban Heat Island: Cause for Microclimate Variations. Architecture—Time Space & People, April 2009, pp. 20-25.
http://www.indiaenvironmentportal.org.in/files/Architecture.pdf
[45]  Voogt, J. A., & Oke, T. R. (2003). Thermal Remote Sensing of Urban Climates. Remote Sensing of Environment, 86, 370-384.
https://doi.org/10.1016/s0034-4257(03)00079-8
[46]  Xu, H. (2006). Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. International Journal of Remote Sensing, 27, 3025-3033.
https://doi.org/10.1080/01431160600589179
[47]  Yuan, F., & Bauer, M. E. (2007). Comparison of Impervious Surface Area and Normalized Difference Vegetation Index as Indicators of Surface Urban Heat Island Effects in Landsat Imagery. Remote Sensing of Environment, 106, 375-386.
https://doi.org/10.1016/j.rse.2006.09.003
[48]  Zareie, S., Khosravi, H., Nasiri, A., & Dastorani, M. (2016). Using Landsat Thematic Mapper (TM) Sensor to Detect Change in Land Surface Temperature in Relation to Land Use Change in Yazd, Iran. Solid Earth, 7, 1551-1564.
https://doi.org/10.5194/se-7-1551-2016
[49]  Zha, Y., Gao, J., & Ni, S. (2003). Use of Normalized Difference Built-Up Index in Automatically Mapping Urban Areas from TM Imagery. International Journal of Remote Sensing, 24, 583-594.
https://doi.org/10.1080/01431160304987
[50]  Zhou, X., & Wang, Y. (2010). Dynamics of Land Surface Temperature in Response to Land-Use/cover Change. Geographical Research, 49, 23-36.
https://doi.org/10.1111/j.1745-5871.2010.00686.x
[51]  Zhou, Y., Yang, G., Wang, S., Wang, L., Wang, F., & Liu, X. (2014). A New Index for Mapping Built-Up and Bare Land Areas from Landsat-8 OLI Data. Remote Sensing Letters, 5, 862-871.
https://doi.org/10.1080/2150704x.2014.973996
[52]  Zhu, Z., & Woodcock, C. E. (2014). Continuous Change Detection and Classification of Land Cover Using All Available Landsat Data. Remote Sensing of Environment, 144, 152-171.
https://doi.org/10.1016/j.rse.2014.01.011

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133