全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Thermophysical, Mechanical and Durability Characterization of Adobe Bricks Reinforced with Fonio (Digitaria exilis) Sounds

DOI: 10.4236/ampc.2024.148012, PP. 146-164

Keywords: Durability, Thermal Comfort, Building, Soil, Fonio Faste

Full-Text   Cite this paper   Add to My Lib

Abstract:

Buildings constructed using modern materials such as cement are energy-intensive, facilitate heat transfer and thus promote warming inside the building. However, the Sudano-Sahelian regions have a hot climate occupying a large period of the year, thus requiring not only sustainable construction materials, but also which provide thermal comfort in the building by limiting the energy demand for air conditioning. These qualifications are important for sub-Saharan African countries in general and those of the Sudano-Sahelian zone in particular, which need ecological materials with good thermal performance to limit heating inside buildings. This study is an energy recovery of agricultural waste in buildings with a view to offering the populations of the northern regions of Cameroon suitable materials at lower cost for the construction of buildings. The soil used for this study was extracted from the locality of Yagoua where the populations make abundant use of mud bricks. Fonio waste was incorporated at low levels into the earth bricks, particularly at 0%, 1%, 2%, 3%, and 4%, with a view to strengthening their thermophysical and mechanical properties. The results obtained indicate that earth bricks reinforced with 4% waste showed better thermal and mechanical insulation properties compared to other formulations with an improvement of 16% and 78% respectively compared to the unreinforced samples. This research allows us to conclude that fonio waste can be used practically without expense in the building with a view to its energy recovery and will promote not only thermal comfort and the limitation of the energy supply for air conditioning, but the construction of more sustainable buildings with a cleaner environment.

References

[1]  Meukam, P., Jannot, Y., Noumowe, A. and Kofane, T.C. (2004) Thermo Physical Characteristics of Economical Building Materials. Construction and Building Materials, 18, 437-443.
https://doi.org/10.1016/j.conbuildmat.2004.03.010
[2]  Fouchal, F., Gouny, F., Maillard, P., Ulmet, L. and Rossignol, S. (2015) Experimental Evaluation of Hydric Performances of Masonry Walls Made of Earth Bricks, Geopolymer and Wooden Frame. Building and Environment, 87, 234-243.
https://doi.org/10.1016/j.buildenv.2015.01.036
[3]  Minke, G. (2006) Buiding with Earth. Design and Technology of a Sustainable Architecture (Text Book). Birkhaeser.
[4]  Laborel-Préneron, A., Aubert, J.E., Magniont, C., Tribout, C. and Bertron, A. (2016) Plant Aggregates and Fibers in Earth Construction Materials: A Review. Construction and Building Materials, 111, 719-734.
https://doi.org/10.1016/j.conbuildmat.2016.02.119
[5]  Saidi, M., Cherif, A.S., Zeghmati, B. and Sediki, E. (2018) Stabilization Effects on the Thermal Conductivity and Sorption Behavior of Earth Bricks. Construction and Building Materials, 167, 566-577.
https://doi.org/10.1016/j.conbuildmat.2018.02.063
[6]  Dawoua Kaoutoing, M., Ndiwe, B., Karga, L., Wedaïna, A.G., Djaoyang, V.B., Betené, A.D.O., et al. (2023) Characterisation of a Composite Material with Polyester Matrix Reinforced with Particles from Doum Palm (Hyphaene thebaica) Fruit. Results in Materials, 18, Article ID: 100401.
https://doi.org/10.1016/j.rinma.2023.100401
[7]  Wati, E., Bidoung, J.C., Damfeu, J.C. and Meukam, P. (2020) Energy Performance of Earthen Building Walls in the Equatorial and Tropical Climates: A Case Study of Cameroon. Energy Efficiency, 13, 735-750.
https://doi.org/10.1007/s12053-020-09856-6
[8]  Ashour, T., Korjenic, A., Korjenic, S. and Wu, W. (2017) Thermal Conductivity of Unfired Earth Bricks Reinforced by Agricultural Waste with Cement and Gypsum. Energy and Buildings, 135, 109-118.
[9]  Paulus, J. (2015) Construction en terre crue: Dispositions qualitatives, constructives et architecturales. Master’s Thesis, Université de Liège.
[10]  Djongyang, N., Tchinda, R. and Njomo, D. (2012) Estimation of Some Comfort Parameters for Sleeping Environments in Dry-Tropical Sub-Saharan Africa Region. Energy Conversion and Management, 58, 110-119.
https://doi.org/10.1016/j.enconman.2012.01.012
[11]  Babé, C., Kidmo, D.K., Tom, A., Mvondo, R.R.N., Boum, R.B.E. and Djongyang, N. (2020) Thermomechanical Characterization and Durability of Adobes Reinforced with Millet Waste Fibers (Sorghum bicolor). Case Studies in Construction Materials, 13, e00422.
https://doi.org/10.1016/j.cscm.2020.e00422
[12]  Babé, C., Kidmo, D.K., Tom, A., Ngono, R.R.M., Kola, B. and Djongyang, N. (2021) Effect of Neem (Azadirachta Indica) Fibers on Mechanical, Thermal and Durability Properties of Adobe Bricks. Energy Reports, 7, 686-698.
[13]  Modjonda, , Souaibou, , Etienne, Y. and Raidandi, D. (2023) Thermal and Mechanical Characterization of Compressed Clay Bricks Reinforced by Rice Husks for Optimizing Building in Sahelian Zone. Advances in Materials Physics and Chemistry, 13, 177-196.
https://doi.org/10.4236/ampc.2023.1310013
[14]  Ouedraogo, M., Dao, K., Millogo, Y., Aubert, J., Messan, A., Seynou, M., et al. (2019) Physical, Thermal and Mechanical Properties of Adobes Stabilized with Fonio (Digitaria exilis) Straw. Journal of Building Engineering, 23, 250-258.
https://doi.org/10.1016/j.jobe.2019.02.005
[15]  Bal, H., Jannot, Y., Gaye, S. and Demeurie, F. (2013) Measurement and Modelisation of the Thermal Conductivity of a Wet Composite Porous Medium: Laterite Based Bricks with Millet Waste Additive. Construction and Building Materials, 41, 586-593.
https://doi.org/10.1016/j.conbuildmat.2012.12.032
[16]  Bal, H., Jannot, Y., Quenette, N., Chenu, A. and Gaye, S. (2012) Water Content Dependence of the Porosity, Density and Thermal Capacity of Laterite Based Bricks with Millet Waste Additive. Construction and Building Materials, 31, 144-150.
https://doi.org/10.1016/j.conbuildmat.2011.12.063
[17]  Kuznetsov, A. and Miles, J. (2021) On the Rate of Convergence of the Gaver-Stehfest Algorithm. IMA Journal of Numerical Analysis, 42, 1645-1664.
https://doi.org/10.1093/imanum/drab015
[18]  Harouna, B. (2011) Modélisation et mesure de propriétés thermiques d’un milieu poreux humide : Brique de latérite avec gousse de mil. Ph.D. Thesis, Université Cheik Anta Diop Dakar.
[19]  Touré, P.M., Sambou, V., Faye, M., Thiam, A., Adj, M. and Azilinon, D. (2017) Mechanical and Hygrothermal Properties of Compressed Stabilized Earth Bricks (CSEB). Journal of Building Engineering, 13, 266-271.
https://doi.org/10.1016/j.jobe.2017.08.012
[20]  Millogo, Y., Aubert, J., Séré, A.D., Fabbri, A. and Morel, J. (2016) Earth Blocks Stabilized by Cow-Dung. Materials and Structures, 49, 4583-4594.
https://doi.org/10.1617/s11527-016-0808-6
[21]  Zak, P., Ashour, T., Korjenic, A., Korjenic, S. and Wu, W. (2016) The Influence of Natural Reinforcement Fibers, Gypsum and Cement on Compressive Strength of Earth Bricks Materials. Construction and Building Materials, 106, 179-188.
https://doi.org/10.1016/j.conbuildmat.2015.12.031
[22]  Bock-hyeng, C., Ofori-boadu, A.N., Yamb-bell, E. and Shofoluwe, M.A. (2016) Mechanical Properties of Sustainable Adobe Bricks Stabilized with Recycled Sugarcane Fiber Waste. International Journal of Engineering Research and Applications, 6, 50-59.
[23]  Calatan, G., Hegyi, A., Dico, C. and Mircea, C. (2016) Determining the Optimum Addition of Vegetable Materials in Adobe Bricks. Procedia Technology, 22, 259-265.
https://doi.org/10.1016/j.protcy.2016.01.077
[24]  (2001) Blocs de terre comprimée pour murs et cloisons: Définitions-Spécifications-Méthodes d’essais-Conditions de reception. XP P13-901.
[25]  Ouedraogo, M., Dao, K., Millogo, Y., Seynou, M., Aubert, J.E. and Gomina, M. (2017) Influence des fibres de kenaf (Hibiscus altissima) sur les propriétés physiques et mécaniques des adobes. Journal de la Société Ouest-Africaine de Chimie, 43, 48-63.
[26]  Millogo, Y., Morel, J., Aubert, J. and Ghavami, K. (2014) Experimental Analysis of Pressed Adobe Blocks Reinforced with Hibiscus Cannabinus Fibers. Construction and Building Materials, 52, 71-78.
https://doi.org/10.1016/j.conbuildmat.2013.10.094
[27]  Ismaiel, M., Chen, Y., Cruz-Noguez, C. and Hagel, M. (2021) Thermal Resistance of Masonry Walls: A Literature Review on Influence Factors, Evaluation, and Improvement. Journal of Building Physics, 45, 528-567.
https://doi.org/10.1177/17442591211009549
[28]  Baldinelli, G., Bianchi, F., Gendelis, S., Jakovics, A., Morini, G.L., Falcioni, S., et al. (2019) Thermal Conductivity Measurement of Insulating Innovative Building Materials by Hot Plate and Heat Flow Meter Devices: A Round Robin Test. International Journal of Thermal Sciences, 139, 25-35.
https://doi.org/10.1016/j.ijthermalsci.2019.01.037
[29]  Benazzouk, A., Douzane, O., Mezreb, K., Laidoudi, B. and Quéneudec, M. (2008) Thermal Conductivity of Cement Composites Containing Rubber Waste Particles: Experimental Study and Modelling. Construction and Building Materials, 22, 573-579.
https://doi.org/10.1016/j.conbuildmat.2006.11.011
[30]  Colinart, T., Pajeot, M., Vinceslas, T., Hellouin De Menibus, A. and Lecompte, T. (2021) Thermal Conductivity of Biobased Insulation Building Materials Measured by Hot Disk: Possibilities and Recommendation. Journal of Building Engineering, 43, Article ID: 102858.
https://doi.org/10.1016/j.jobe.2021.102858
[31]  Moretti, E., Belloni, E. and Agosti, F. (2016) Innovative Mineral Fiber Insulation Panels for Buildings: Thermal and Acoustic Characterization. Applied Energy, 169, 421-432.
https://doi.org/10.1016/j.apenergy.2016.02.048
[32]  Al-Taie, A., Yaghoubi, E., Wasantha, P.L.P., Van Staden, R., Guerrieri, M. and Fragomeni, S. (2023) Mechanical and Physical Properties and Cyclic Swell-Shrink Behaviour of Expansive Clay Improved by Recycled Glass. International Journal of Pavement Engineering, 24, Article ID: 2204436.
https://doi.org/10.1080/10298436.2023.2204436
[33]  Talibi, S., Page, J., Djelal, C. and Saâdi, L. (2024) Impact of Treated Red-Algae Fibers on Physico-Mechanical Behavior of Compressed Earth Bricks for Construction. European Journal of Environmental and Civil Engineering.
https://doi.org/10.1080/19648189.2024.2329722
[34]  Danso, H., Martinson, D.B., Ali, M. and Williams, J.B. (2015) Physical, Mechanical and Durability Properties of Soil Building Blocks Reinforced with Natural Fibres. Construction and Building Materials, 101, 797-809.
https://doi.org/10.1016/j.conbuildmat.2015.10.069
[35]  Sorgho, B., Bressollier, P., Guel, B., Zerbo, L., Ouedraogo, R., Gomina, M., et al. (2016) Étude des propriétés mécaniques des géomateriaux argileux associant la décoction de Parkia Biglobosa (néré). Comptes Rendus. Chimie, 19, 895-901.
https://doi.org/10.1016/j.crci.2016.01.016
[36]  Erdogmus, E. (2015) Use of Fiber-Reinforced Cements in Masonry Construction and Structural Rehabilitation. Fibers, 3, 41-63.
https://doi.org/10.3390/fib3010041
[37]  Laborel-Préneron, A., Aubert, J.E., Magniont, C., Maillard, P. and Poirier, C. (2017) Effect of Plant Aggregates on Mechanical Properties of Earth Bricks. Journal of Materials in Civil Engineering, 29, 1-12.
https://doi.org/10.1061/(asce)mt.1943-5533.0002096
[38]  Organisation Régionale Africaine de Normalisation (1998) Blocs de terre comprimée: Norme. Technologie no 11, CDI et CRATerre-EAG.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133