Niels Bohr constructed the first version of quantum mechanics. It has been called “old quantum mechanics” with a connotation of being obsolete. It is logically consistent, however, and deserves the name of simplequantum mechanics (SQM). It differs only from the semiclassical approximation by assuming that the average position and average velocity of an electron can be sharply defined on closed orbits. This assumption does not contradict Heisenberg’s uncertainty relations, since the quantization rule means that the electron can be anywhere on this orbit when it allows for stationary waves. This approach was remarkably efficient for one electron in hydrogen atoms and even for the electron pair in hydrogen molecules. However, dissociation of H2 and determination of the orbit of the single electron in
led to problems that remained unsolved for more than 100 years. Their solution, presented here, yields more physical insight and reveals, for instance, that mutual polarization of two hydrogen atoms can yield a metastable state.
References
[1]
Planck, M. (1906) Vorlesungen über die Theorie der Wärmestrahlung. Legare Street Press.
[2]
Bohr, N. (1911) Studier over Metallernes Elektrontheori. Ph.D. Thesis, University of Copenhague.
[3]
Drude, P. (1900) Zur Elektronentheorie der Metalle. Annalen der Physik, 306, 566-613. https://doi.org/10.1002/andp.19003060312
[4]
Wilson, W. (1915) LXXXIII. The Quantum-Theory of Radiation and Line Spectra. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 29, 795-802. https://doi.org/10.1080/14786440608635362
[5]
Sommerfeld, A. (1915) Zur Theorie der Balmerschen Serie, Münchener Akad. https://www.zobodat.at/pdf/Sitz-Ber-Akad-Muenchen-math-Kl_1915_0425-0458.pdf
[6]
Ishiwara, J. (1915) Die universelle Bedeutung des Wirkungsquantums. Physical Society of Japan, 8, 106-116. https://www.jstage.jst.go.jp/article/ptmps1907/8/4/8_4_106/_pdf
[7]
Einstein, A. (1917) Zum Quantensatz von Sommerfeld und Epstein. Deutsche Physikalische Gesellschaft. Verhandlungen, 19, 82-92.
[8]
The Nobel Prize in Physics. https://www.nobelprize.org/prizes/physics/1929/broglie/biographical/
[9]
Schrödinger, E. (1926) Quantisierung als Eigenwertproblem. Annalen der Physik, 384, 489-527. https://doi.org/10.1002/andp.19263840602
[10]
Born, M. (1926) Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik, 38, 803-827. https://doi.org/10.1007/bf01397184
[11]
Heisenberg, W. (1925) Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik, 33, 879-893. https://doi.org/10.1007/bf01328377
[12]
Heisenberg, W. (1927) Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43, 172-198. https://doi.org/10.1007/bf01397280
[13]
Meessen, A. (2021) Elementary Particles Result from Space-Time Quantization. Journal of Modern Physics, 12, 1573-1605. https://doi.org/10.4236/jmp.2021.1211094
[14]
Liu, J., Salumbides, E.J., Hollenstein, U., Koelemeij, J.C.J., Eikema, K.S.E., Ubachs, W., et al. (2009) Determination of the Ionization and Dissociation Energies of the Hydrogen Molecule. The Journal of Chemical Physics, 130, Article ID: 174306. https://doi.org/10.1063/1.3120443
[15]
Sprecher, D., Jungen, C., Ubachs, W. and Merkt, F. (2011) Towards Measuring the Ionisation and Dissociation Energies of Molecular Hydrogen with Sub-MHZ Accuracy. Faraday Discussions, 150, 51-70. https://doi.org/10.1039/c0fd00035c
[16]
Heitler, W. and London, F. (1927) Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik, 44, 455-472. https://doi.org/10.1007/bf01397394
[17]
Pauling, L. and Wilson, E.B. (1935) Introduction to Quantum Mechanics with Applications to Chemistry. McGraw-Hill.
[18]
Pachucki, K. and Komasa, J. (2016) Schrödinger Equation Solved for the Hydrogen Molecule with Unprecedented Accuracy. The Journal of Chemical Physics, 144, Article ID: 164306. https://doi.org/10.1063/1.4948309
[19]
Ruedenberg, K. (1962) The Physical Nature of the Chemical Bond. Reviews of Modern Physics, 34, 326-376. https://doi.org/10.1103/revmodphys.34.326
[20]
Bacskay, G.B. and Nordholm, S. (2013) Covalent Bonding: The Fundamental Role of the Kinetic Energy. The Journal of Physical Chemistry A, 117, 7946-7958. https://doi.org/10.1021/jp403284g
[21]
Svidzinsky, A.A., Scully, M.O. and Herschbach, D.R. (2005) Simple and Surprisingly Accurate Approach to the Chemical Bond Obtained from Dimensional Scaling. Physical Review Letters, 95, Article ID: 080401. https://doi.org/10.1103/physrevlett.95.080401
[22]
Svidzinsky, A., Scully, M. and Herschbach, D. (2014) Bohr’s Molecular Model, a Century Later. Physics Today, 67, 33-39. https://doi.org/10.1063/pt.3.2243
[23]
Witten, E. (1980) Quarks, Atoms, and the 1/N Expansion. Physics Today, 33, 38-43. https://doi.org/10.1063/1.2914163
[24]
Chen, G., Ding, Z., Lin, C., Herschbach, D. and Scully, M.O. (2010) Variational Justification of the Dimensional-Scaling Method in Chemical Physics: The H-Atom. Journal of Mathematical Chemistry, 48, 791-811. https://doi.org/10.1007/s10910-010-9710-6
[25]
Yang, Z. and Hou, J. (2019) Calculating the Ground State Energy of Hydrogen Molecules and Helium Hydride Ions Using Bohr’s Quantum Theory. European Journal of Physics, 40, Article ID: 065405. https://doi.org/10.1088/1361-6404/ab32ce
[26]
Allmendinger, T. (2018) The Elucidation of the Ground State in the H-Atom-Model of Niels Bohr and Its Application on the Bond-Length Computation in the H2-Molecule. International Journal of Molecular and Theoretical Physics, 2, 1-10. https://doi.org/10.15226/2576-4934/2/1/00109
[27]
Puchalski, M., Komasa, J. and Pachucki, K. (2017) Relativistic Corrections for the Ground Electronic State of Molecular Hydrogen. Physical Review A, 95, Article ID: 052506. https://doi.org/10.1103/physreva.95.052506
[28]
Roueff, E., Abgrall, H., Czachorowski, P., Pachucki, K., Puchalski, M. and Komasa, J. (2019) The Full Infrared Spectrum of Molecular Hydrogen. Astronomy & Astrophysics, 630, A58. https://doi.org/10.1051/0004-6361/201936249
[29]
Nakashima, H. and Nakatsuji, H. (2018) Solving the Schrödinger Equation of Hydrogen Molecule with the Free Complement-Local Schrödinger Equation Method: Potential Energy Curves of the Ground and Singly Excited Singlet and Triplet States, Σ, Π, Δ, and Φ. The Journal of Chemical Physics, 149, Article ID: 244116. https://doi.org/10.1063/1.5060659
[30]
Beiser, A, (1963) Concepts of Modern Physics. McGraw-Hill.
[31]
Scott, T.C., Aubert-Frécon, M. and Grotendorst, J. (2006) New Approach for the Electron Energies of the Hydrogen Molecular Ion. Chemical Physics, 324, 323-338.
[32]
Fernandez, F.M. and Garcia, J. (2021) Highly Accurate Potential Energy Curves for the Hydrogen Molecular Ion. ChemistrySelect, 6, 9527-9534.
[33]
Pauli, W. (1922) Über das Modell des Wasserstoffmolekülions. Annalen der Physik, 373, 177-240. https://doi.org/10.1002/andp.19223731102
[34]
Niessen, K.F. (1923) Zur Quantentheorie des Wasserstoffmolekülions. Annalen der Physik, 375, 129-134. https://doi.org/10.1002/andp.19233750205
[35]
Fitzpatrick, R. (2010) . https://farside.ph.utexas.edu/teaching/qm/Quantum/node100.html
[36]
Burrau, Ø. (1927) Berechnung des Energiewertes des Wasserstoffmolekül-Ions im Normalzustand. Det Kgl Danske Videnskabernes Selskab, 7, 2-18. https://gymarkiv.sdu.dk/MFM/kdvs/mfm%201-9/mfm-7-14.pdf
[37]
Grivet, J. (2002) The Hydrogen Molecular Ion Revisited. Journal of Chemical Education, 79, 127-132. https://doi.org/10.1021/ed079p127
[38]
Strand, M.P. and Reinhardta, W.P. (1979) Semiclassical Quantization of the Low Lying Electronic States of . The Journal of Chemical Physics, 70, 3812-3827. https://doi.org/10.1063/1.437932
[39]
Knudson, S.K. (2006) The Old Quantum Theory for : Some Chemical Implications. Journal of Chemical Education, 83, 464-472. https://doi.org/10.1021/ed083p464
[40]
Buehler, E.J., Gooch, E.E., Dial, J.L. and Knudson, S.K. (2000) Semiclassical Energies of Low-Lying States of One-Electron Diatomics. Chemical Physics, 253, 219-230. https://doi.org/10.1016/s0301-0104(00)00006-9
[41]
Knudson, S.K. (2022) The Old Quantum Theory for One-Electron Diatomic Ions and Molecules.
[42]
Wild, W.J. (1980) Euler’s Three-Body Problem. American Journal of Physics, 48, 297-301. https://doi.org/10.1119/1.12144
[43]
Genova, A.L. and Aldrin, B. (2015) A Free-Return Earth-Moon Cycler Orbit for an Interplanetary Cruise Ship. https://ntrs.nasa.gov/api/citations/20150018049/downloads/20150018049.pdf
[44]
Feynman, R.P. (1963) Other Two-State Systems. The Feynman Lectures on Physics, Quantum Mechanics, III.
[45]
Bucher, M. (2008) Rise and Premature Fall of the Old Quantum Theory. https://arxiv.org/abs/0802.1366
[46]
Meessen, A. (2018) Water Memory Due to Chains of Nano-Pearls. Journal of Modern Physics, 9, 2657-2724. https://doi.org/10.4236/jmp.2018.914165
[47]
Meessen, A. (2020) Virus Destruction by Resonance. Journal of Modern Physics, 11, 2011-2052. https://www.scirp.org/pdf/jmp_2020122516060286.pdf
[48]
Meessen, A. (2023) Explanation of Ball Lightning by Plasma Oscillations. Journal of Modern Physics, 14, 1355-1381. https://doi.org/10.4236/jmp.2023.1411078
[49]
Meessen, A., (2023) Explanation of Cold Fusion and Biotransmutations. Journal of Modern Physics, 14, 1087-1116. https://www.scirp.org/pdf/jmp_2023062914321461.pdf
[50]
Heisenberg, W, (1969) Der Teil und das Ganze. Piper.
[51]
Feynman, R.P. (1948) Space-Time Approach to Non-Relativistic Quantum Mechanics. Reviews of Modern Physics, 20, 367-387. https://doi.org/10.1103/revmodphys.20.367