|
Mine Engineering 2024
基于IAHP-未确知测度的煤矿瓦斯爆炸风险评估
|
Abstract:
为了对煤矿瓦斯爆炸风险进行量化并解决分析过程中不确定性处理的不足,基于IAHP-未确知测度理论提出了一种煤矿瓦斯爆炸风险评估方法。首先,基于专家经验确定影响瓦斯爆炸的主要风险指标,并构建风险评估指标体系结构模型。然后,通过IAHP方法计算出各影响指标权重,同时以未确知测度理论为基础,对具有不确定性和模糊性的信息进行合理的定量化分析,构建指标测度函数,得到结构模型的指标测度矩阵。最后,基于置信度准则进行风险等级判定。结果表明:4个一级指标中影响最大的是管理因素,是导致煤矿瓦斯爆炸的关键风险因素;20个二级指标中影响最大的是安全科技与投入,其次是员工的平均工龄、通风系统、安全文化,煤矿应重视这些因素在矿井安全生产单元中的重要作用;影响最小的是自然发火期、煤层爆炸指数。根据煤矿实际开采情况对5个工作面进行瓦斯爆炸风险评估,评判等级分别为安全、较安全、较安全、较安全、较安全,评价结果与实际工程相符合,基于该评价模型可为决策者有效管控煤矿瓦斯爆炸风险提供一定的理论指导。
In order to quantify the coal mine gas explosion risk and solve the shortage of uncertainty treatment in the process of analysis, a coal mine gas explosion risk assessment method based on IAHP-unascertained measure theory is proposed. First, the main risk indicators affecting gas explosion are determined based on the expert experience, and the risk assessment index system structure model is built. Then, the weight of each influence index is calculated by IAHP method. At the same time, based on the unascertained measure theory, the information with uncertainty and fuzziness is quantitatively analyzed, the index measure function is constructed, and the index measure matrix of the structural model is obtained. Finally, the risk level is determined based on the confidence criterion. The results show that management factor is the most influential factor among the four primary indexes, which is the key risk factor leading to coal mine gas explosion. Among the 20 secondary indexes, safety technology and input are the most influential, followed by the average length of service of employees, ventilation system and safety culture. Coal mines should pay attention to the important role of these factors in the mine safety production unit. The least influence is spontaneous ignition period and coal seam explosion index. According to the actual mining situation of the coal mine, the gas explosion risk assessment was carried out on 5 working faces, and the evaluation grades were respectively safe, relatively safe, relatively safe, relatively safe, and relatively safe. The evaluation results were consistent with the actual project, and based on the evaluation model, certain theoretical guidance could be provided for the decision makers to effectively control the gas explosion risk in the coal mine.
[1] | 黄琪嵩, 程久龙, 贾吉喆, 等. RES理论在煤与瓦斯突出危险性预测中的应用[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(3): 248-253. |
[2] | 边振华. 独头巷道挡板对爆炸冲击波的传播规律影响研究[D]: [硕士学位论文]. 邯郸: 河北工程大学, 2022. |
[3] | Meng, Z., Shi, X. and Li, G. (2016) Deformation, Failure and Permeability of Coal-Bearing Strata during Longwall Mining. Engineering Geology, 208, 69-80. https://doi.org/10.1016/j.enggeo.2016.04.029 |
[4] | 吕广罗, 田刚军, 张勇, 等. 巨厚砂砾岩含水层下特厚煤层保水开采分区及实践[J]. 煤炭学报, 2017, 42(1): 189-196. |
[5] | 葛瑛, 傅贵. 预防特别重大瓦斯爆炸事故安全培训体系构建[J]. 煤炭工程, 2019, 51(1): 106-109. |
[6] | 成连华, 郭阿娟, 郭慧敏, 等. 煤矿瓦斯爆炸风险耦合演化路径研究[J]. 中国安全科学学报, 2022, 32(4): 59-64. |
[7] | 李润求, 施式亮, 念其锋, 等. 基于PSO-SVM的煤矿瓦斯爆炸灾害风险模式识别[J]. 中国安全科学学报, 2013, 23(5): 38-43. |
[8] | Zhang, Q. (2020) Risk Assessment of Gas Explosion Disaster Based on Random Forest Model. IOP Conference Series: Earth and Environmental Science, 446, Article ID: 022081. https://doi.org/10.1088/1755-1315/446/2/022081 |
[9] | 皮子坤, 贾宝山, 贾廷贵, 等. 基于前景理论和区间数的煤矿瓦斯爆炸风险评价[J]. 中国安全科学学报, 2017, 27(6): 91-96. |
[10] | 李敏, 林志军, 鲁义, 等. 基于模糊贝叶斯网络的煤矿瓦斯爆炸风险评估[J]. 煤炭学报, 2023, 48(z2): 626-637. |
[11] | 鲁锦涛, 任利成, 戎丹, 等. 基于灰色-物元模型的煤矿瓦斯爆炸风险评估[J]. 中国安全科学学报, 2021, 31(2): 99-105. |
[12] | 景国勋, 陈纪宏. 基于SPA-VFS耦合模型的瓦斯爆炸风险评价[J]. 安全与环境学报, 2023, 23(7): 2151-2158. |
[13] | Tauziède, C., Pokryszka, Z. and Barrière, J.P. (2002) Risk Assessment of Surface Emission of Gas from Abandoned Coal Mines in France and Techniques of Prevention. Mining Technology, 111, 192-196. https://doi.org/10.1179/mnt.2002.111.3.192 |
[14] | Medic Pejic, L., García Torrent, J., Querol, E. and Lebecki, K. (2013) A New Simple Methodology for Evaluation of Explosion Risk in Underground Coal Mines. Journal of Loss Prevention in the Process Industries, 26, 1524-1529. https://doi.org/10.1016/j.jlp.2013.08.021 |
[15] | Li, M., Wang, D. and Shan, H. (2019) Risk Assessment of Mine Ignition Sources Using Fuzzy Bayesian Network. Process Safety and Environmental Protection, 125, 297-306. https://doi.org/10.1016/j.psep.2019.03.029 |
[16] | Dong, L., Peng, G., Fu, Y., Bai, Y. and Liu, Y. (2008) Unascertained Measurement Classifying Model of Goaf Collapse Prediction. Journal of Coal Science and Engineering (China), 14, 221-224. https://doi.org/10.1007/s12404-008-0046-9 |
[17] | 严雅静, 顾水杰, 于祥, 等. 基于未确知测度理论的巷道围岩稳定性研究[J]. 金属矿山, 2019(11): 20-26. |
[18] | 秦忠诚, 曹斌, 吴清法. 基于盲数理论改进未确知测度的冲击地压评价模型应用研究[J]. 煤矿安全, 2019, 50(7): 224-227. |
[19] | 温建敏, 张西寨, 丁剑锋, 等. 基于层次分析和未确知测度的冲击地压风险评价[J]. 矿业研究与开发, 2021, 41(7): 98-103. |
[20] | Yin, Y., Wang, J., Zou, B., Zhang, J., Su, Y. and Sun, Q. (2023) Evaluation of Controlled Blasting Quality for Rock-Mass Tunneling Based on Multiple Indices. Journal of Construction Engineering and Management, 149, Article ID: 04022155. https://doi.org/10.1061/jcemd4.coeng-12025 |
[21] | 周航, 廖昕, 陈仕阔, 等. 基于组合赋权和未确知测度的深埋隧道岩爆危险性评价——以川藏交通廊道桑珠岭隧道为例[J]. 地球科学, 2022, 47(6): 2130-2148. |
[22] | 任家苇, 左宇军, 林健云, 等. 基于改进未确知测度的含软弱夹层巷道围岩稳定性评价[J]. 矿冶工程, 2023, 43(4): 39-43, 47. |
[23] | 张乃禄. 安全评价技术[M]. 西安: 西安电子科技大学出版社, 2011. |
[24] | 李录, 秦本东, 郭佳奇, 等. 基于IAHP-Fuzzy的岩溶隧道突水风险预测[J]. 高压物理学报, 2022, 36(5): 190-202. |
[25] | 翟强, 顾伟红, 赵映璎. 基于未确知测度理论的隧道施工瓦斯灾害风险评价[J]. 铁道科学与工程学报, 2021, 18(3): 803-812. |
[26] | 张江石, 李泳暾, 冒香凝, 等. 基于NLP的煤矿事故原因分类研究[J]. 中国安全科学学报, 2023, 33(6): 20-26. |
[27] | 李金蓉, 杨玉中. DS理论-贝叶斯网络下的煤矿通风系统风险评估[J]. 中国安全科学学报, 2022, 32(8): 146-153. |
[28] | 贾宝山, 皮子坤, 李锐, 等. 煤矿瓦斯爆炸灰色-IAHP危险性评价模型及应用[J]. 辽宁工程技术大学学报(自然科学版), 2017, 36(9): 909-913. |