|
基于AI视觉技术的水面蒸发量智能监测方法与设备应用研究
|
Abstract:
针对传统蒸发站蒸发皿观测智能化程度不高的问题,本文设计一种新型高精度武大AiMeteo视觉水面蒸发量智能观测设备。该设备利用智能摄像头实时拍摄蒸发皿的水面视频,采用图像处理技术以及神经网络进行水位特征学习和分析,对设定时间内水量变化的准确识别,实现蒸发量的精确计算。实验表明,该设备具有较高的准确性、实时性与稳定性,能够满足水面蒸发观测规范要求。该设备为水面蒸发量观测提供了一种简单高效的解决方案,实现了水面蒸发量智能化与低成本观测,具有广泛的应用前景。
Aiming at the low intelligence problem of the traditional evaporation station, a novel high-precision Wuhan University AiMeteo visual water surface evaporation intelligent observation equipment was designed and developed in this paper. For accurately identifying changes in water volume within a given time and calculating the evaporation, the new equipment utilizes intelligent cameras to capture the water surface video of the evaporation dish in real time, and adopts image processing techniques as well as neural networks for water level feature learning and analysis. Experiments show that this device possesses high accuracy, real-time performance, and stability, meeting the specification requirements for water surface evaporation observation. This device provides a simple and efficient solution for water surface evaporation observation, realizes intelligent and low-cost observation of water surface evaporation and has a wide range of application prospects.
[1] | 张强, 王胜. 关于干旱和半干旱区陆面水分过程的研究[J]. 干旱气象, 2007, 25(2): 1-4. |
[2] | 杨蓉华, 李佳佳, 贺新光. 长江流域蒸发皿蒸发量的区域变化特征及影响因素[J]. 热带地理, 2022, 42(12): 2098-2109. |
[3] | 杨闯, 陈海波, 李鹏, 等. 高精度蒸发自动观测仪设计与实现[J]. 自动化仪表, 2023, 44(10): 14-19. |
[4] | 陈建峰. 水面蒸发变化及其影响因素分析[J]. 地下水, 2023, 45(1): 204-205+269. |
[5] | 温川. 自动降水蒸发仪器在气象观测项目中的应用探析[J]. 分析仪器, 2022(3): 35-39. |
[6] | 张霁. 蒸发估算方法研究进展及展望[J]. 大众标准化, 2023(12): 109-111. |
[7] | 龙亚星, 黄勤, 李成伟. 基于机器学习技术的蒸发皿蒸发量估算模型[J]. 气象科技, 2021, 49(2): 166-173. |
[8] | 史俊才. 基于时间卷积网络的蒸发皿蒸发量预测研究[D]: [硕士学位论文]. 太原: 太原理工大学, 2022. |
[9] | 王铁胜. 计算机视觉技术的发展及应用[J]. 信息系统工程, 2022(4): 63-66. |
[10] | 赵立, 荆亚昊, 廖勇. 人工智能技术在水利行业中的应用综述[J]. 长江信息通信, 2023, 36(6): 9-12. |
[11] | SL 630-2013. 水面蒸发观测规范[S]. 北京: 中国水利水电出版社, 2013. |
[12] | ZHAO, S. L., HUANG, W. X., YANG, M. X., et al. Real rainy scene analysis: A dual-module benchmark for image deraining and segmentation. In 2023 IEEE international conference on multimedia and expo workshops (ICMEW). Piscataway: Institute of Electrical and Electronics Engineers, 2023: 69-74. https://doi.org/10.1109/ICMEW59549.2023.00018 |
[13] | KIRILLOV, A., MINTUN, E., RAVI, N., et al. Segment anything. In Proceedings of the IEEE/CVF international conference on computer vision. Piscataway: Institute of Electrical and Electronics Engineers, 2023: 4015-4026. https://doi.org/10.1109/ICCV51070.2023.00371 |
[14] | CAI, H., LI, J. Y., HU, M. Y., et al. EfficientVit: Lightweight multi-scale attention for on-device semantic segmentation. 2022. arXiv preprint arXiv:2205.14756. |