|
cGAS-STING信号通路激活机制和细胞功能研究概述
|
Abstract:
cGAS-STING信号通路是先天免疫的重要通路之一,其由环磷酸鸟苷-磷酸腺苷酸合成酶(cyclic GMP-AMP synthase, cGAS)、干扰素基因刺激物(stimulator of interferon gene, STING)和一系列下游信号转导接头分子及效应分子共同组成。环GMP-AMP合成酶(cGAS)可以识别细菌、病毒等微生物的核酸,进而可以催化环GMP-AMP (cGAMP)的合成,激活免疫应答,通过STING-TBK1信号通路刺激I型干扰素的诱导。然而,该cGAS-STING信号通路还与多种疾病的发生有关,其异常激活可能使机体引发自身免疫性疾病。在细胞水平上,cGAS-STING信号通路的多方面作用已经出现:这些作用包括自噬、翻译、新陈代谢平衡、DNA损伤修复、衰老和细胞凋亡。这些作用由关键的通路成分及其与细胞生理状态的内在联系所致。在这篇综述中,我们将讨论由cGAS-STING信号通路控制的细胞生理状态的最新进展、与疾病的相关性以及引起疾病的内在机制。本文旨在提供一个全面的信号通路信息框架,结合这些机制以及细胞功能的发现,帮助研究人员更好地了解cGAS-STING信号通路的细胞功能,从而发现一些有前景的疾病治疗靶点,为今后的研究奠定理论基础。
The cGAS-STING signaling pathway is one of the important pathways in innate immunity, which consists of cyclic GMP-AMP synthase (cGAS), stimulator of interferon gene (STING) and a series of downstream signaling junction molecules and effectors molecules. Cyclic GMP-AMP synthase (cGAS) recognizes nucleic acids from bacteria, viruses, and other microorganisms, which in turn catalyzes the synthesis of cyclic GMP-AMP (cGAMP), activates the immune response, and stimulates the induction of type I interferon through the STING-TBK1 signaling pathway. However, this cGAS-STING signaling pathway has also been implicated in the development of a variety of diseases, and its aberrant activation may allow the body to trigger autoimmune diseases. At the cellular level, multifaceted roles for the cGAS-STING signaling pathway have emerged: these include autophagy, translation, metabolic homeostasis, DNA damage repair, senescence, and apoptosis. These roles result from key pathway components and their intrinsic connection to the physiological state of the cell. In this review, we will discuss recent advances in cellular physiological states controlled by the cGAS-STING signaling pathway, their relevance to disease, and the intrinsic mechanisms that cause disease. The aim of this paper is to provide a comprehensive framework of signaling pathway information, combined with the discovery of these mechanisms as well as cellular functions, to help researchers better understand the cellular functions of the cGAS-STING signaling pathway, which will lead to the discovery of some promising therapeutic targets for diseases, and lay a theoretical foundation for future research.
[1] | Decout, A., Katz, J.D., Venkatraman, S. and Ablasser, A. (2021) The cGAS-STING Pathway as a Therapeutic Target in Inflammatory Diseases. Nature Reviews Immunology, 21, 548-569. https://doi.org/10.1038/s41577-021-00524-z |
[2] | Zhang, X., Bai, X.-C. and Chen, Z.J. (2020) Structures and Mechanisms in the cGAS-STING Innate Immunity Pathway. Immunity, 53, 43-53. https://doi.org/10.1016/j.immuni.2020.05.013 |
[3] | Li, X., Shu, C., Yi, G., Chaton, C.T., Shelton, C.L., Diao, J., et al. (2013) Cyclic GMP-AMP Synthase Is Activated by Double-Stranded DNA-Induced Oligomerization. Immunity, 39, 1019-1031. https://doi.org/10.1016/j.immuni.2013.10.019 |
[4] | Shang, G., Zhang, C., Chen, Z.J., Bai, X. and Zhang, X. (2019) Cryo-EM Structures of STING Reveal Its Mechanism of Activation by Cyclic GMP-AMP. Nature, 567, 389-393. https://doi.org/10.1038/s41586-019-0998-5 |
[5] | Wu, J., Sun, L., Chen, X., Du, F., Shi, H., Chen, C., et al. (2013) Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Science, 339, 826-830. https://doi.org/10.1126/science.1229963 |
[6] | Yang, H., Wang, H., Ren, J., Chen, Q. and Chen, Z.J. (2017) cGAS Is Essential for Cellular Senescence. Proceedings of the National Academy of Sciences, 114, E4612-E4620. https://doi.org/10.1073/pnas.1705499114 |
[7] | Ablasser, A., Goldeck, M., Cavlar, T., Deimling, T., Witte, G., Röhl, I., et al. (2013) cGAS Produces a 2’-5’-Linked Cyclic Dinucleotide Second Messenger that Activates STING. Nature, 498, 380-384. https://doi.org/10.1038/nature12306 |
[8] | Larabi, A., Devos, J.M., Ng, S.-L., Nanao, M.H., Round, A., Maniatis, T., et al. (2013) Crystal Structure and Mechanism of Activation of TANK-Binding Kinase 1. Cell Reports, 3, 734-746. https://doi.org/10.1016/j.celrep.2013.01.034 |
[9] | Zhao, B., Shu, C., Gao, X., Sankaran, B., Du, F., Shelton, C.L., et al. (2016) Structural Basis for Concerted Recruitment and Activation of IRF-3 by Innate Immune Adaptor Proteins. Proceedings of the National Academy of Sciences, 113, E3403-E3412. https://doi.org/10.1073/pnas.1603269113 |
[10] | Liu, S., Cai, X., Wu, J., Cong, Q., Chen, X., Li, T., et al. (2015) Phosphorylation of Innate Immune Adaptor Proteins MAVS, STING, and TRIF Induces IRF3 Activation. Science, 347, aaa2630. https://doi.org/10.1126/science.aaa2630 |
[11] | Zhang, C., Shang, G., Gui, X., Zhang, X., Bai, X.-C. and Chen, Z.J. (2019) Structural Basis of STING Binding with and Phosphorylation by TBK1. Nature, 567, 394-398. https://doi.org/10.1038/s41586-019-1000-2 |
[12] | Chattopadhyay, S., Marques, J.T., Yamashita, M., Peters, K.L., Smith, K., Desai, A., et al. (2010) Viral Apoptosis Is Induced by IRF-3-Mediated Activation of Bax. The EMBO Journal, 29, 1762-1773. https://doi.org/10.1038/emboj.2010.50 |
[13] | Gan, Y., Li, X., Han, S., Liang, Q., Ma, X., Rong, P., et al. (2022) The cGAS/STING Pathway: A Novel Target for Cancer Therapy. Frontiers in Immunology, 12, Article 795401. https://doi.org/10.3389/fimmu.2021.795401 |
[14] | Jiang, S., Xia, N., Luo, J., et al. (2022) The Porcine cGAS-STING Pathway Exerts an Unusual Antiviral Function Independent of IFN and Autophagy. https://doi.org/10.1101/2022.07.28.501948 |
[15] | Gui, X., Yang, H., Li, T., Tan, X., Shi, P., Li, M., et al. (2019) Autophagy Induction via STING Trafficking Is a Primordial Function of the cGAS Pathway. Nature, 567, 262-266. https://doi.org/10.1038/s41586-019-1006-9 |
[16] | Liu, Y., Gordesky-Gold, B., Leney-Greene, M., Weinbren, N.L., Tudor, M. and Cherry, S. (2018) Inflammation-Induced, Sting-Dependent Autophagy Restricts Zika Virus Infection in the Drosophila Brain. Cell Host & Microbe, 24, 57-68. https://doi.org/10.1016/j.chom.2018.05.022 |
[17] | Wu, J., Dobbs, N., Yang, K. and Yan, N. (2020) Interferon-Independent Activities of Mammalian STING Mediate Antiviral Response and Tumor Immune Evasion. Immunity, 53, 115-126. https://doi.org/10.1016/j.immuni.2020.06.009 |
[18] | Zhang, D., Liu, Y., Zhu, Y., Zhang, Q., Guan, H., Liu, S., et al. (2022) A Non-Canonical CGAS-STING-PERK Pathway Facilitates the Translational Program Critical for Senescence and Organ Fibrosis. Nature Cell Biology, 24, 766-782. https://doi.org/10.1038/s41556-022-00894-z |
[19] | Franz, K.M., Neidermyer, W.J., Tan, Y., Whelan, S.P.J. and Kagan, J.C. (2018) Sting-Dependent Translation Inhibition Restricts RNA Virus Replication. Proceedings of the National Academy of Sciences, 115, E2058-E2067. https://doi.org/10.1073/pnas.1716937115 |
[20] | York, A.G., Williams, K.J., Argus, J.P., Zhou, Q.D., Brar, G., Vergnes, L., et al. (2015) Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I IFN Signaling. Cell, 163, 1716-1729. https://doi.org/10.1016/j.cell.2015.11.045 |
[21] | Vila, I.K., Chamma, H., Steer, A., Saccas, M., Taffoni, C., Turtoi, E., et al. (2022) STING Orchestrates the Crosstalk between Polyunsaturated Fatty Acid Metabolism and Inflammatory Responses. Cell Metabolism, 34, 125-139. https://doi.org/10.1016/j.cmet.2021.12.007 |
[22] | Bai, J., Cervantes, C., Liu, J., He, S., Zhou, H., Zhang, B., et al. (2017) DsbA-l Prevents Obesity-Induced Inflammation and Insulin Resistance by Suppressing the mtDNA Release-Activated cGAS-cGAMP-STING Pathway. Proceedings of the National Academy of Sciences, 114, 12196-12201. https://doi.org/10.1073/pnas.1708744114 |
[23] | Du, M. and Chen, Z.J. (2018) DNA-Induced Liquid Phase Condensation of cGAS Activates Innate Immune Signaling. Science, 361, 704-709. https://doi.org/10.1126/science.aat1022 |
[24] | Zhou, W., Mohr, L., Maciejowski, J. and Kranzusch, P.J. (2021) cGAS Phase Separation Inhibits TREX1-Mediated DNA Degradation and Enhances Cytosolic DNA Sensing. Molecular Cell, 81, 739-755. https://doi.org/10.1016/j.molcel.2021.01.024 |
[25] | Cerboni, S., Jeremiah, N., Gentili, M., Gehrmann, U., Conrad, C., Stolzenberg, M., et al. (2017) Intrinsic Antiproliferative Activity of the Innate Sensor STING in T Lymphocytes. Journal of Experimental Medicine, 214, 1769-1785. https://doi.org/10.1084/jem.20161674 |
[26] | Meng, F., Yu, Z., Zhang, D., Chen, S., Guan, H., Zhou, R., et al. (2021) Induced Phase Separation of Mutant NF2 Imprisons the cGAS-STING Machinery to Abrogate Antitumor Immunity. Molecular Cell, 81, 4147-4164. https://doi.org/10.1016/j.molcel.2021.07.040 |
[27] | Zhao, Q., Wei, Y., Pandol, S.J., Li, L. and Habtezion, A. (2018) STING Signaling Promotes Inflammation in Experimental Acute Pancreatitis. Gastroenterology, 154, 1822-1835. https://doi.org/10.1053/j.gastro.2018.01.065 |
[28] | Dou, Z., Ghosh, K., Vizioli, M.G., Zhu, J., Sen, P., Wangensteen, K.J., et al. (2017) Cytoplasmic Chromatin Triggers Inflammation in Senescence and Cancer. Nature, 550, 402-406. https://doi.org/10.1038/nature24050 |
[29] | Glück, S., Guey, B., Gulen, M.F., Wolter, K., Kang, T., Schmacke, N.A., et al. (2017) Innate Immune Sensing of Cytosolic Chromatin Fragments through cGAS Promotes Senescence. Nature Cell Biology, 19, 1061-1070. https://doi.org/10.1038/ncb3586 |
[30] | Yamashiro, L.H., Wilson, S.C., Morrison, H.M., Karalis, V., Chung, J.J., Chen, K.J., et al. (2020) Interferon-Independent STING Signaling Promotes Resistance to HSV-1 in vivo. Nature Communications, 11, Article No. 3382. https://doi.org/10.1038/s41467-020-17156-x |
[31] | Chu, T.-T., Tu, X., Yang, K., Wu, J., Repa, J.J. and Yan, N. (2021) Tonic Prime-Boost of STING Signalling Mediates Niemann-Pick Disease Type C. Nature, 596, 570-575. https://doi.org/10.1038/s41586-021-03762-2 |
[32] | Mackenzie, K.J., Carroll, P., Martin, C.-A., Murina, O., Fluteau, A., Simpson, D.J., et al. (2017) cGAS Surveillance of Micronuclei Links Genome Instability to Innate Immunity. Nature, 548, 461-465. https://doi.org/10.1038/nature23449 |
[33] | Liu, H., Zhang, H., Wu, X., Ma, D., Wu, J., Wang, L., et al. (2018) Nuclear cGAS Suppresses DNA Repair and Promotes Tumorigenesis. Nature, 563, 131-136. https://doi.org/10.1038/s41586-018-0629-6 |
[34] | Jiang, H., Xue, X., Panda, S., Kawale, A., Hooy, R.M., Liang, F., et al. (2019) Chromatin-Bound cGAS Is an Inhibitor of DNA Repair and Hence Accelerates Genome Destabilization and Cell Death. The EMBO Journal, 38, e102718. https://doi.org/10.15252/embj.2019102718 |
[35] | Banerjee, D., Langberg, K., Abbas, S., Odermatt, E., Yerramothu, P., Volaric, M., et al. (2021) A Non-Canonical, Interferon-Independent Signaling Activity of cGAMP Triggers DNA Damage Response Signaling. Nature Communications, 12, Article No. 6207. https://doi.org/10.1038/s41467-021-26240-9 |
[36] | Wu, J. and Chen, Z.J. (2014) Innate Immune Sensing and Signaling of Cytosolic Nucleic Acids. Annual Review of Immunology, 32, 461-488. https://doi.org/10.1146/annurev-immunol-032713-120156 |
[37] | Hemmi, H., Takeuchi, O., Sato, S., Yamamoto, M., Kaisho, T., Sanjo, H., et al. (2004) The Roles of Two IκB Kinase-Related Kinases in Lipopolysaccharide and Double Stranded RNA Signaling and Viral Infection. The Journal of Experimental Medicine, 199, 1641-1650. https://doi.org/10.1084/jem.20040520 |
[38] | Li, Z., Chu, W., Hu, Y., Delhase, M., Deerinck, T., Ellisman, M., et al. (1999) The IKKβ Subunit of IκB Kinase (IKK) Is Essential for Nuclear Factor κB Activation and Prevention of Apoptosis. The Journal of Experimental Medicine, 189, 1839-1845. https://doi.org/10.1084/jem.189.11.1839 |
[39] | Fang, R., Jiang, Q., Zhou, X., Wang, C., Guan, Y., Tao, J., et al. (2017) MAVS Activates TBK1 and IKKε through TRAFs in NEMO Dependent and Independent Manner. PLOS Pathogens, 13, e1006720. https://doi.org/10.1371/journal.ppat.1006720 |
[40] | Fang, R., Wang, C., Jiang, Q., Lv, M., Gao, P., Yu, X., et al. (2017) NEMO-IKKβ Are Essential for IRF3 and NF-κB Activation in the cGAS-STING Pathway. The Journal of Immunology, 199, 3222-3233. https://doi.org/10.4049/jimmunol.1700699 |