全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

慢性不可预测轻度应激对大鼠脑电信号及睡眠结构的影响
Effects of Chronic Unpredictable Mild Stress on EEG Signals and Sleep Structure in Rats

DOI: 10.12677/hjbm.2024.143054, PP. 502-510

Keywords: 抑郁症,慢性不可预测轻度应激,脑电
Depression
, Chronic Unpredictable Mild Stress, Electroencephalography

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:大鼠慢性不可预测轻度应激(Chronic unpredictable mild stress, CUMS)模型是研究抑郁症发病机制常用的动物模型之一,睡眠障碍是抑郁症的常见伴随症状。本研究通过分析CUMS模型大鼠的脑电信号及睡眠结构变化,为CUMS模型应用于抑郁症睡眠障碍研究提供依据。方法:取雄性SD大鼠分为2组,即正常对照组和模型组,应用7种CUMS进行造模,并使用蔗糖偏好实验、强迫游泳实验及旷场实验进行行为学检测,评价CUMS大鼠的抑郁样行为。采用无线遥测脑电技术对大鼠海马CA3区的脑电信号进行采集和分析。结果:与正常对照组相比,CUMS组大鼠的蔗糖偏好率降低,强迫游泳静止不动时间增加,旷场实验穿越格子数,总移动距离和修饰行为减少,无线遥测脑电数据分析显示CUMS组大鼠Beta和Theta占比明显增加,WAKE占比增加,REM和NREM占比值降低。结论:CUMS大鼠与临床抑郁症患者的EEG和睡眠结构变化有较好一致性,可进一步用于抑郁伴随睡眠障碍的机制研究和药物治疗作用的评价。
Objective: The rat chronic unpredictable mild stress (CUMS) model is one of the animal models commonly used to study the pathogenesis of depression, and sleep disturbance is a common concomitant symptom of depression. In this study, we analyzed the Electroencephalogram (EEG) signals and sleep structure changes in CUMS rats to provide a basis for the application of the CUMS model to the study of sleep disorders in depression. Methods: Male SD rats were taken and divided into the control group and the model group. 7 types of CUMS were applied for modeling, and behavioral tests were conducted using the sucrose preference test, the forced swimming test and the open-field test to evaluate the depressive-like behavior of CUMS rats. Wireless telemetry EEG technology was used to collect and analyze the EEG signals in the CA3 region of the rat hippocampus. Results: Compared with the control group, rats in the CUMS group showed decreased sucrose preference rate, increased forced swimming immobility time, and decreased number of crossings in the open-field test, total distance and rearing behaviors. The analysis of the EEG data showed a significant increase in the Beta and Theta occupancy, an increase in the WAKE occupancy, and a decrease in the REM and NREM occupancy values of the rats in the CUMS group. Conclusion: The EEG and sleep structure changes of CUMS rats and clinically depressed patients are in good agreement, which can be further used for the mechanism study of depression accompanied by sleep disorders and the evaluation of drug therapeutic effects.

References

[1]  Kandola, A., Ashdown-Franks, G., Hendrikse, J., Sabiston, C.M. and Stubbs, B. (2019) Physical Activity and Depression: Towards Understanding the Antidepressant Mechanisms of Physical Activity. Neuroscience & Biobehavioral Reviews, 107, 525-539.
https://doi.org/10.1016/j.neubiorev.2019.09.040
[2]  何沙潼, 蒋梦若, 陈嘉豪, 等. 抑郁的中枢神经炎症机制相关研究进展[J]. 生命的化学, 2022, 42(7): 1315-1321.
[3]  Averina, O.V., Zorkina, Y.A., Yunes, R.A., Kovtun, A.S., Ushakova, V.M., Morozova, A.Y., et al. (2020) Bacterial Metabolites of Human Gut Microbiota Correlating with Depression. International Journal of Molecular Sciences, 21, Article 9234.
https://doi.org/10.3390/ijms21239234
[4]  Fried, E.I. and Nesse, R.M. (2015) Depression Is Not a Consistent Syndrome: An Investigation of Unique Symptom Patterns in the STAR*D Study. Journal of Affective Disorders, 172, 96-102.
https://doi.org/10.1016/j.jad.2014.10.010
[5]  Hickie, I.B. and Rogers, N.L. (2011) Novel Melatonin-Based Therapies: Potential Advances in the Treatment of Major Depression. The Lancet, 378, 621-631.
https://doi.org/10.1016/s0140-6736(11)60095-0
[6]  Wang, Y., Li, R., Zhang, M., Zhang, Z., Qu, W. and Huang, Z. (2015) The Neurobiological Mechanisms and Treatments of REM Sleep Disturbances in Depression. Current Neuropharmacology, 13, 543-553.
https://doi.org/10.2174/1570159x13666150310002540
[7]  王凌云, 郭宏敏. 失眠与情志因素的相关性研究进展[J]. 世界睡眠医学杂志, 2021, 8(2): 371-372.
[8]  吴丹, 黄苏, 梁微, 等. 门诊失眠患者的临床心理学特征分析[J]. 中国社区医师, 2021, 37(31): 62-63.
[9]  Falup-Pecurariu, C., Diaconu, Ș., Țînț, D. and Falup-Pecurariu, O. (2021) Neurobiology of Sleep (Review). Experimental and Therapeutic Medicine, 21, Article No. 272.
https://doi.org/10.3892/etm.2021.9703
[10]  王怡忻, 朱湘茹, 杨利军. 融合共空间模式与脑网络特征的EEG抑郁识别[J]. 计算机工程与应用, 2022, 58(22): 150-158.
[11]  Cirelli, C. and Tononi, G. (2015) Cortical Development, Electroencephalogram Rhythms, and the Sleep/Wake Cycle. Biological Psychiatry, 77, 1071-1078.
https://doi.org/10.1016/j.biopsych.2014.12.017
[12]  杨一帆, 王豆, 李涛, 等. 慢性不可预知温和刺激抑郁模型及其评价指标的研究进展[J]. 山东医药, 2021, 61(25): 96-99.
[13]  Antoniuk, S., Bijata, M., Ponimaskin, E. and Wlodarczyk, J. (2019) Chronic Unpredictable Mild Stress for Modeling Depression in Rodents: Meta-Analysis of Model Reliability. Neuroscience & Biobehavioral Reviews, 99, 101-116.
https://doi.org/10.1016/j.neubiorev.2018.12.002
[14]  Yao, D., Li, R., Hao, J., Huang, H., Wang, X., Ran, L., et al. (2023) Melatonin Alleviates Depression-Like Behaviors and Cognitive Dysfunction in Mice by Regulating the Circadian Rhythm of AQP4 Polarization. Translational Psychiatry, 13, Article No. 310.
https://doi.org/10.1038/s41398-023-02614-z
[15]  Li, H., Xiang, Y., Zhu, Z., Wang, W., Jiang, Z., Zhao, M., et al. (2021) Rifaximin-Mediated Gut Microbiota Regulation Modulates the Function of Microglia and Protects against CUMS-Induced Depression-Like Behaviors in Adolescent Rat. Journal of Neuroinflammation, 18, Article No. 254.
https://doi.org/10.1186/s12974-021-02303-y
[16]  Liu, X., Li, Z., Li, Z., Gao, X., Zhou, Y., Sun, H., et al. (2012) Urinary Metabonomic Study Using a CUMS Rat Model of Depression. Magnetic Resonance in Chemistry, 50, 187-192.
https://doi.org/10.1002/mrc.2865
[17]  Du, X., Yin, M., Yuan, L., Zhang, G., Fan, Y., Li, Z., et al. (2020) Reduction of Depression-Like Behavior in Rat Model Induced by ShRNA Targeting Norepinephrine Transporter in Locus Coeruleus. Translational Psychiatry, 10, Article No. 130.
https://doi.org/10.1038/s41398-020-0808-8
[18]  Yan, L., Xu, X., He, Z., Wang, S., Zhao, L., Qiu, J., et al. (2020) Antidepressant-Like Effects and Cognitive Enhancement of Coadministration of Chaihu Shugan San and Fluoxetine: Dependent on the BDNF-ERK-CREB Signaling Pathway in the Hippocampus and Frontal Cortex. BioMed Research International, 2020, Article 2794263.
https://doi.org/10.1155/2020/2794263
[19]  Commons, K.G., Cholanians, A.B., Babb, J.A. and Ehlinger, D.G. (2017) The Rodent Forced Swim Test Measures Stress-Coping Strategy, Not Depression-Like Behavior. ACS Chemical Neuroscience, 8, 955-960.
https://doi.org/10.1021/acschemneuro.7b00042
[20]  Fonseca-Rodrigues, D., Gonçalves, J., Laranjeira, I., Almeida, A. and Pinto-Ribeiro, F. (2022) Sucrose Intake and Preference by Wistar Han Rats Are Not Influenced by Sex or Food/Water Deprivation. Pharmacology Biochemistry and Behavior, 216, Article 173387.
https://doi.org/10.1016/j.pbb.2022.173387
[21]  Xu, F., Peng, D., Tao, C., Yin, D., Kou, J., Zhu, D., et al. (2011) Anti-Depression Effects of Danggui-Shaoyao-San, a Fixed Combination of Traditional Chinese Medicine, on Depression Model in Mice and Rats. Phytomedicine, 18, 1130-1136.
https://doi.org/10.1016/j.phymed.2011.05.002
[22]  Zhou, X., Liu, C., Liu, Y., Ma, Q., Zhao, X., Jiang, Y., et al. (2021) Xiaoyaosan Alleviates Hippocampal Glutamate-Induced Toxicity in the CUMS Rats via NR2B and PI3K/Akt Signaling Pathway. Frontiers in Pharmacology, 12, Article 586788.
https://doi.org/10.3389/fphar.2021.586788
[23]  Chen, Y., Zhang, Y., Wang, J., Li, S., Wang, Y., Zhang, Z., et al. (2023) Anti‐Neuroinflammation Effects of Transcutaneous Auricular Vagus Nerve Stimulation against Depression‐Like Behaviors via Hypothalamic α7NAchR/ JAK2/STAT3/NF-κB Pathway in Rats Exposed to Chronic Unpredictable Mild Stress. CNS Neuroscience & Therapeutics, 29, 2634-2644.
https://doi.org/10.1111/cns.14207
[24]  刘娟, 陈敏洁, 张琪林, 等. 脑电图在抑郁症中的应用研究进展[J]. 临床心身疾病杂志, 2024, 30(3): 123-127.
[25]  Blaskovich, B., Reichardt, R., Gombos, F., Spoormaker, V.I. and Simor, P. (2019) Cortical Hyperarousal in NREM Sleep Normalizes from Pre-to Post-REM Periods in Individuals with Frequent Nightmares. Sleep, 43, zsz201.
https://doi.org/10.1093/sleep/zsz201
[26]  Cervera-Ferri, A., Teruel-Martí, V., Barceló-Molina, M., Martínez-Ricós, J., Luque-García, A., Martínez-Bellver, S., et al. (2016) Characterization of Oscillatory Changes in Hippocampus and Amygdala after Deep Brain Stimulation of the Infralimbic Prefrontal Cortex. Physiological Reports, 4, e12854.
https://doi.org/10.14814/phy2.12854
[27]  Bland, B.H. and Oddie, S.D. (2001) Theta Band Oscillation and Synchrony in the Hippocampal Formation and Associated Structures: The Case for Its Role in Sensorimotor Integration. Behavioural Brain Research, 127, 119-136.
https://doi.org/10.1016/s0166-4328(1)00358-8
[28]  McNaughton, N., Kocsis, B. and Hajós, M. (2007) Elicited Hippocampal Theta Rhythm: A Screen for Anxiolytic and Procognitive Drugs through Changes in Hippocampal Function? Behavioural Pharmacology, 18, 329-346.
https://doi.org/10.1097/fbp.0b013e3282ee82e3
[29]  Goldschmied, J.R., Cheng, P., Armitage, R. and Deldin, P.J. (2019) A Preliminary Investigation of the Role of Slow-Wave Activity in Modulating Waking EEG Theta as a Marker of Sleep Propensity in Major Depressive Disorder. Journal of Affective Disorders, 257, 504-509.
https://doi.org/10.1016/j.jad.2019.07.027
[30]  Steiger, A. and Kimura, M. (2010) Wake and Sleep EEG Provide Biomarkers in Depression. Journal of Psychiatric Research, 44, 242-252.
https://doi.org/10.1016/j.jpsychires.2009.08.013
[31]  余家快, 王婷, 张玉, 等. 抑郁症病人睡眠结构特征与前瞻性记忆的相关性研究[J]. 安徽医药, 2022, 26(12): 2489-2493.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133