|
基于孟德尔随机化探讨免疫细胞与药物依赖的因果关系
|
Abstract:
目的:采用两样本孟德尔随机化(MR)方法研究731种免疫细胞表型与药物依赖发病风险的因果效应。方法:在全基因组关联研究数据库(genome wide association study, GWAS)中筛选符合条件的731种免疫细胞表型及药物依赖的因果关系。共纳入了三种类型的免疫特征((MFI), RC, AC)。综合敏感性分析用于验证结果的异质性和水平多向性。结果:IVW结果显示免疫细胞与免疫细胞发病风险存在因果效应,其中两种免疫表型对药物依赖的保护作用:Activated Treg %CD4 Treg(OR = 0.859, 95%CI: 0.763~0.967, P = 0.012)、CD3 on activated Treg (OR = 0.881, 95%CI: 0.780~0.995, P = 0.042)。五种免疫表型对药物依赖的危害作用:CD28 on activated & secreting Treg (OR = 1.152, 95%CI: 1.006~1.320, P = 0.041)、CM DN (CD4-CD8-)%T cell (OR = 1.152, 95%CI: 1.017~1.305, P = 0.026)、HLA DR+ CD8br %lymphocyte (OR = 1.162, 95%CI: 1.032~1.308, P = 0.013)、Mo MDSC AC (OR = 1.135, 95%CI: 1.008~1.279, P = 0.037)、TD CD8br AC (OR = 1.398, 95%CI: 1.036~1.887, P = 0.028)。结论:我们的研究通过基因手段证明了免疫细胞与药物依赖之间的密切联系,从而为今后的临床研究与预防提供了指导。
Objective: A two-sample Mendelian randomisation (MR) approach was used to investigate the causal effect of 731 immune cell phenotypes on the risk of developing drug dependence. Methods: Eligible 731 immune cell phenotypes and drug-dependent causality were screened in the genome wide association study (GWAS) database. A total of three types of immune profiles (median fluorescence intensities (MFI), relative cell (RC), and absolute cell (AC)) were included. Comprehensive sensitivity analyses were used to validate the heterogeneity and horizontal multidirectionality of the results. Results IVW results showed a causal effect of immune cells and risk of immune cell pathogenesis, with two immune phenotypes protective against drug dependence: activated Treg %CD4 Treg (OR = 0.859, 95% CI: 0.763~0.967, P = 0.012), CD3 on activated Treg (OR = 0.881, 95% CI: 0.780~0.995, P = 0.042). Harmful effects of five immunophenotypes on drug dependence: CD28 on activated & secreting Treg (OR = 1.152, 95%CI: 1.006~1.320, P = 0.041), CM DN (CD4-CD8-)%T cell (OR = 1.152, 95%CI: 1.017~1.305, P = 0.026), HLA DR+ CD8br %lymphocyte (OR = 1.162, 95%CI: 1.032~1.308, P = 0.013), Mo MDSC AC (OR = 1.135, 95%CI: 1.008~1.279, P = 0.037), TD CD8br AC (OR = 1.398, 95%CI: 1.036~1.887, P = 0.028). Conclusions: Our study demonstrates a strong link between immune cells and drug dependence by genetic means, thus providing guidance for future clinical research and prevention.
[1] | Irvine, D.J., Maus, M.V., Mooney, D.J. and Wong, W.W. (2022) The Future of Engineered Immune Cell Therapies. Science, 378, 853-858. https://doi.org/10.1126/science.abq6990 |
[2] | Black, C. (2021) Treatment for Drug Dependence in England Needs Investment and Reform. The Lancet, 398, 474-476. https://doi.org/10.1016/S0140-6736(21)01588-9 |
[3] | Pulendran, B. and Davis, M.M. (2020) The Science and Medicine of Human Immunology. Science, 369, eaay4014. https://doi.org/10.1126/science.aay4014 |
[4] | Assis, M.A., Carranza, P.G. and Ambrosio, E. (2021) A “Drug-Dependent” Immune System Can Compromise Protection against Infection: The Relationships between Psychostimulants and HIV. Viruses, 13, Article 722. https://doi.org/10.3390/v13050722 |
[5] | Birney, E. (2022) Mendelian Randomization. Cold Spring Harbor Perspectives in Medicine, 12, A041302. https://doi.org/10.1101/cshperspect.a041302 |
[6] | Orru, V., Steri, M., Sidore, C., et al. (2020) Complex Genetic Signatures in Immune Cells Underlie Autoimmunity and Inform Therapy. Nature Genetics, 52, 1036-1045. https://doi.org/10.1038/s41588-020-0684-4 |
[7] | Sakaue, S., Kanai, M., Tanigawa, Y., et al. (2021) A Cross-Population Atlas of Genetic Associations for 220 Human Phenotypes. Nature Genetics, 53, 1415-1424. https://doi.org/10.1038/s41588-021-00931-x |
[8] | Freuer, D., Meisinger, C. and Linseisen, J. (2021) Causal Relationship Between Dietary Macronutrient Composition and Anthropometric Measures: A Bidirectional Two-Sample Mendelian Randomization Analysis. Clinical Nutrition, 40, 4120-4131. https://doi.org/10.1016/j.clnu.2021.01.047 |
[9] | Davies, N.M., Holmes, M.V., Davey and Smith, G. (2018) Reading Mendelian Randomisation Studies: A Guide, Glossary, and Checklist for Clinicians. British Medical Journal, 362, K601. https://doi.org/10.1136/bmj.k601 |
[10] | Bowden, J., Davey, Smith, G., Haycock, P.C. and Burgess, S. (2016) Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genetic Epidemiology, 40, 304-314. https://doi.org/10.1002/gepi.21965 |
[11] | Verbanck, M., Chen, C.Y., Neale, B. and Do, R. (2018) Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization Between Complex Traits and Diseases. Nature Genetics, 50, 693-698. https://doi.org/10.1038/s41588-018-0099-7 |
[12] | Pierce, B.L., Ahsan, H. and Vanderweele, T.J. (2011) Power and Instrument Strength Requirements for Mendelian Randomization Studies Using Multiple Genetic Variants. International Journal of Epidemiology, 40, 740-752. https://doi.org/10.1093/ije/dyq151 |
[13] | Burgess, S. and Thompson, S.G. (2017) Interpreting Findings from Mendelian Randomization Using the MR-Egger Method. European Journal of Epidemiology, 32, 377-389. https://doi.org/10.1007/s10654-017-0255-x |
[14] | Zhu, Y., Yan, P., Wang, R., et al. (2023) Opioid-Induced Fragile-Like Regulatory T Cells Contribute to Withdrawal. Cell, 186, 591-606. https://doi.org/10.1016/j.cell.2022.12.030 |
[15] | 黄丽奋, 黄俊彬, 陈纯. 调控调节性T细胞转录因子的研究新进展[J] . 国际输血及血液学杂志, 2020, 43(2): 129-133. |
[16] | Austin, P.J., Kim, C.F., Perera, C.J. and Moalem-Taylor, G. (2012) Regulatory T Cells Attenuate Neuropathic Pain Following Peripheral Nerve Injury and Experimental Autoimmune Neuritis. Pain, 153, 1916-1931. https://doi.org/10.1016/j.pain.2012.06.005 |
[17] | Vojdani, A., Koksoy, S., Vojdani, E., Engelman, M., Benzvi, C. and Lerner, A. (2024) Natural Killer Cells and Cytotoxic T Cells: Complementary Partners Against Microorganisms and Cancer. Microorganisms, 12, Article 230. https://doi.org/10.3390/microorganisms12010230 |
[18] | Tosello-Trampont, A.C., Krueger, P., Narayanan, S., Landes, S.G., Leitinger, N. and Hahn, Y.S. (2016) NKp46+ Natural Killer Cells Attenuate Metabolism-Induced Hepatic Fibrosis by Regulating Macrophage Activation in Mice. Hepatology, 63, 799-812. https://doi.org/10.1002/hep.28389 |
[19] | Morhenn, K., Quentin, T., Wichmann, H., et al. (2019) Mechanistic Role of the CREB-Regulated Transcription Coactivator 1 in Cardiac Hypertrophy. Journal of Molecular and Cellular Cardiology, 127, 31-43. https://doi.org/10.1016/j.yjmcc.2018.12.001 |
[20] | Li, Y., Zhang, C., Jiang, A., et al. (2024) Potential Anti-Tumor Effects of Regulatory T Cells in the Tumor Microenvironment: A Review. Journal of Translational Medicine, 22, Article No. 293. https://doi.org/10.1186/s12967-024-05104-y |
[21] | Du, J., Wei, L., Li, G., et al. (2021) Persistent High Percentage of HLA-DR+CD38high CD8+ T Cells Associated with Immune Disorder and Disease Severity of COVID-19. Frontiers in Immunology, 12, Article 735125. https://doi.org/10.3389/fimmu.2021.735125 |
[22] | Chen, C., Bandarchuk, A., et al. (2017) Monocytic Myeloid-Derived Suppressor Cells (Mo-MDSC) Are Increased but Not M1 or M2 TAM Macrophages in the Bone Marrow of Patients with BCR-ABL Negative Myeloid Neoplasm (MPN). Blood, 130, Article 5266. |
[23] | He, Z.N., Zhang, C.Y., Zhao, Y.W., et al. (2023) Regulation of T Cells by Myeloid-Derived Suppressor Cells: Emerging Immunosuppressor in Lung Cancer. Discover Oncology, 14, Article No. 185. https://doi.org/10.1007/s12672-023-00793-1 |