全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Rh-bFGF重组大肠杆菌的发酵工艺优化
Optimisation of the Fermentation Process of Rh-bFGF Recombinant Escherichia coli

DOI: 10.12677/hjbm.2024.143051, PP. 471-482

Keywords: 大肠杆菌,Rh-bFGF,单因素,响应面优化,OD600
Echerichia coli
, Rh-bFGF, One-Way, Response Surface Optimisation, OD600

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rh-bFGF重组大肠杆菌发酵工艺优化,根据培养基的组成成分,以菌体生长密度为检测值对重组大肠杆菌发酵条件所需碳源、有机氮源、无机氮源、无机盐离子、pH值、接种量进行单因素法和响应面法优化,得到最适发酵条件为:酵母粉3% (W/V)、豆粕0.5% (W/V)、氯化钠0.5% (W/V)、尿素0.5% (W/V)、pH 6.2、接种量5% (V/V)。当装液量为100 mL时,菌体生长密度OD600能达到2.66,相较于LB (OD600 = 1.5)培养基提升约77%,大大缩短发酵时间,达到节约成本的目的。
Optimisation of fermentation process of rh-bFGF recombinant E. coli. rh-bFGF recombinant E. coli fermentation process was optimised by one-way and response surface methods based on the composition of the medium, and the carbon source, organic nitrogen source, inorganic nitrogen source, inorganic salt ions, pH, and the amount of inoculum required for the fermentation conditions of the recombinant E. coli, according to the composition of the medium, with the growth density of the bacterium as the assay, and the optimal fermentation conditions were obtained as follows: 3% yeast powder (W/V), 0.5% soybean meal (W/V), NaCl 0.5% (W/V), urea 0.5% (W/V), pH 6.2, and inoculum 5% (V/V). When the volume of liquid is 100 mL, the density of bacterial growth OD600 can reach 2.66, compared with LB (OD600 = 1.5) medium to improve about 77%, greatly shorten the fermentation time, to achieve the purpose of cost savings.

References

[1]  Calero, P. and Nikel, P.I. (2018) Chasing Bacterial chassis for Metabolic Engineering: A Perspective Review from Classical to Non‐traditional Microorganisms. Microbial Biotechnology, 12, 98-124.
https://doi.org/10.1111/1751-7915.13292
[2]  Papaneophytou, C. (2019) Design of Experiments as a Tool for Optimization in Recombinant Protein Biotechnology: From Constructs to Crystals. Molecular Biotechnology, 61, 873-891.
https://doi.org/10.1007/s12033-019-00218-x
[3]  James, S. and Jain, V. (2022) A Positive Selection Escherichia coli Recombinant Protein Expression Vector for One-Step Cloning. Frontiers in Bioengineering and Biotechnology, 9, Article 776828.
https://doi.org/10.3389/fbioe.2021.776828
[4]  陈杰. 人iASPP全长CDS的发现、克隆、表达载体构建及功能鉴定[D]: [硕士学位论文]. 重庆: 第三军医大学, 2007.
[5]  Cantoia, A., Aguilar Lucero, D., Ceccarelli, E.A. and Rosano, G.L. (2021) From the Notebook to Recombinant Protein Production in Escherichia coli: Design of Expression Vectors and Gene Cloning. Methods in Enzymology, 659, 19-35.
https://doi.org/10.1016/bs.mie.2021.07.008
[6]  Nora, L.C., Westmann, C.A., Martins‐Santana, L., Alves, L.d.F., Monteiro, L.M.O., Guazzaroni, M., et al. (2018) The Art of Vector Engineering: Towards the Construction of Next‐generation Genetic Tools. Microbial Biotechnology, 12, 125-147.
https://doi.org/10.1111/1751-7915.13318
[7]  Sayers, E.W., Bolton, E.E., Brister, J.R., Canese, K., Chan, J., Comeau, D.C., et al. (2021) Database Resources of the National Center for Biotechnology Information. Nucleic Acids Research, 50, D20-D26.
https://doi.org/10.1093/nar/gkab1112
[8]  Zheng, P., Wang, S., Wang, X. and Zeng, X. (2022) Editorial: Artificial Intelligence in Bioinformatics and Drug Repurposing: Methods and Applications. Frontiers in Genetics, 13, Article 870795.
https://doi.org/10.3389/fgene.2022.870795
[9]  Marabotti, A., Romano, P. and Facchiano, A. (2021) Editorial: Computational Proteomics and Integration of Data Resources for Advanced Studies in Life Sciences. Frontiers in Genetics, 12, Article 729013.
https://doi.org/10.3389/fgene.2021.729013
[10]  Gospodarowicz, D. (1975) Purification of a Fibroblast Growth Factor from Bovine Pituitary. Journal of Biological Chemistry, 250, 2515-2520.
https://doi.org/10.1016/s0021-9258(19)41631-1
[11]  Gospodarowicz, D., Bialecki, H. and Greenburg, G. (1978) Purification of the Fibroblast Growth Factor Activity from Bovine Brain. Journal of Biological Chemistry, 253, 3736-3743.
https://doi.org/10.1016/s0021-9258(17)34863-9
[12]  Thomas, K.A., Rios-Candelore, M. and Fitzpatrick, S. (1984) Purification and Characterization of Acidic Fibroblast Growth Factor from Bovine Brain. Proceedings of the National Academy of Sciences of the United States of America, 81, 357-361.
https://doi.org/10.1073/pnas.81.2.357
[13]  黄更生. 大肠杆菌表达重组hbFGF结构和功能优化[D]: [硕士学位论文]. 广州: 暨南大学, 2003.
[14]  Packiam, K.A.R., Ramanan, R.N., Ooi, C.W., Krishnaswamy, L. and Tey, B.T. (2020) Stepwise Optimization of Recombinant Protein Production in Escherichia coli Utilizing Computational and Experimental Approaches. Applied Microbiology and Biotechnology, 104, 3253-3266.
https://doi.org/10.1007/s00253-020-10454-w

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133