全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

RohA信号通路介导miR-133b调控脑缺血再灌注后血脑屏障通透性
miR-133b Regulates Blood-Brain Barrier Permeability after Cerebral Ischemia-Reperfusion Mediated by RohA Signaling Pathway

DOI: 10.12677/hjbm.2024.143047, PP. 426-434

Keywords: miR-133b,脑缺血再灌注,血脑屏障,通透性,糖氧剥夺
miR-133b
, Cerebral Ischemia-Reperfusion, Blood-Brain Barrier, Permeability, Glycooxygen Deprivation

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:探究miR-133b在脑缺血再灌注后血脑屏障通透性调控中的作用及其机制。方法:采用大脑中动脉闭塞再灌注(MCAO/R)小鼠模型,小鼠脑内注射miR-133b agomir进行miR-133b过表达,TTC染色检测miR-133b过表达对小鼠脑梗死体积的影响;实时定量PCR检测MCAOR小鼠缺血侧脑组织及外周血miR-133b表达水平;采用悬挂实验评估miR-133b过表达对MCAO/R模型小鼠神经功能改善的影响; Western blot及ELISA检测miR-133b过表达对MCAO/R模型小鼠脑内RohA、claudin-5、ZO-1表达水平的影响;采用伊文思蓝渗透法评估小鼠血脑屏障通透性。结果:在MCAO/R模型小鼠缺血侧脑皮层组织与血浆中的miR-133b表达水平均降低,miR-133b过表达可显著减少MCAO/R小鼠脑梗死的体积,改善小鼠神经功能损害;miR-133b过表达可使MCAO/R小鼠脑内缺血区RohA、claudin-5、ZO-1蛋白表达显著降低。结论:小鼠脑缺血再灌注后体内miR-133b表达水平下降,miR-133b过表达具有降低脑缺血再灌注后脑血屏障通透性,发挥抗脑缺血作用,其机制可能是通过RohA信号通路介导的。
Objective: To investigate the role and mechanism of miR-133b in the regulation of blood-brain barrier permeability after cerebral ischemia-reperfusion. Methods: Mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R) was established. miR-133b Agomir was injected into the brain, and the expression levels of miR-133b in the peripheral blood and infarcted brain tissue were detected by RT-PCR. The effect of miR-133b overexpression on cerebral infarction volume was detected by TTC staining, and the effect of miR-133b overexpression on neurological function was evaluated by suspension test in MCAO/R model mice. The effects of miR-133b on the expression of RohA, Claudin-5 and Zo-1 in the brain of MCAO mice were detected by Western blot and ELISA respectively, and the permeability of blood-brain barrier was evaluated by Evans Blue Penetration method. Results: the expression of miR-133b was significantly decreased in the plasma and ischemic cerebral cortex of MCAO/R model mice. While the overexpression of miR-133b could significantly reduce the cerebral infarction volume and ameliorate the neurological impairment in the MCAO/R mice. Overexpression of miR-133b significantly decreased the expression levels of RohA, Claudin-5 and Zo-1 in ischemic penumbra of mice. Conclusion: The expression of miR-133b is significantly decreased after cerebral ischemia-reperfusion in mice. Overexpression of miR-133b can decrease the permeability of cerebral blood barrier after cerebral ischemia-reperfusion, which plays an anti-cerebral ischemia role. The mechanism may be mediated by RohA signaling pathway.

References

[1]  Xu, L., Yang, X., Gao, H., Wang, X., Zhou, B., Li, Y., et al. (2022) Clinical Efficacy and Safety Analysis of Argatroban and Alteplase Treatment Regimens for Acute Cerebral Infarction. Journal of Neurorestoratology, 10, Article ID: 100017.
https://doi.org/10.1016/j.jnrt.2022.100017
[2]  Yu, Y., Zheng, Y., Dong, X., Qiao, X. and Tao, Y. (2022) Efficacy and Safety of Tirofiban in Patients with Acute Ischemic Stroke without Large-Vessel Occlusion and Not Receiving Intravenous Thrombolysis: A Randomized Controlled Open-Label Trial. Journal of Neurorestoratology, 10, Article ID: 100026.
https://doi.org/10.1016/j.jnrt.2022.100026
[3]  Huang, H., Chen, L., Chopp, M., Young, W., Robert Bach, J., He, X., et al. (2021) The 2020 Yearbook of Neurorestoratology. Journal of Neurorestoratology, 9, 1-12.
https://doi.org/10.26599/jnr.2021.9040002
[4]  Yang, C., Hawkins, K.E., Doré, S. and Candelario-Jalil, E. (2019) Neuroinflammatory Mechanisms of Blood-Brain Barrier Damage in Ischemic Stroke. American Journal of Physiology-Cell Physiology, 316, C135-C153.
https://doi.org/10.1152/ajpcell.00136.2018
[5]  Andersen, H.H., Duroux, M. and Gazerani, P. (2014) Micrornas as Modulators and Biomarkers of Inflammatory and Neuropathic Pain Conditions. Neurobiology of Disease, 71, 159-168.
https://doi.org/10.1016/j.nbd.2014.08.003
[6]  Bi, C., Zhang, G., Bai, Y., Zhao, B. and Yang, H. (2019) Increased Expression of Mir-153 Predicts Poor Prognosis for Patients with Prostate Cancer. Medicine, 98, e16705.
https://doi.org/10.1097/md.0000000000016705
[7]  Shao, H., Dong, D. and Shao, F. (2019) Long Non-Coding RNA Tug1-Mediated Down-Regulation of KLF4 Contributes to Metastasis and the Epithelial-to-Mesenchymal Transition of Colorectal Cancer by miR-153-1. Cancer Management and Research, 11, 8699-8710.
https://doi.org/10.2147/cmar.s208508
[8]  Ma, H., Tian, T., Liu, X., Xia, M., Chen, C., Mai, L., et al. (2019) Upregulated Circ_0005576 Facilitates Cervical Cancer Progression via the miR-153/KIF20A Axis. Biomedicine & Pharmacotherapy, 118, Article ID: 109311.
https://doi.org/10.1016/j.biopha.2019.109311
[9]  Eyileten, C., Wicik, Z., De Rosa, S., Mirowska-Guzel, D., Soplinska, A., Indolfi, C., et al. (2018) Micrornas as Diagnostic and Prognostic Biomarkers in Ischemic Stroke—A Comprehensive Review and Bioinformatic Analysis. Cells, 7, Article No. 249.
https://doi.org/10.3390/cells7120249
[10]  Gong, P., Li, R., Jia, H., Ma, Z., Li, X., Dai, X., et al. (2019) Anfibatide Preserves Blood-Brain Barrier Integrity by Inhibiting TLR4/RhoA/ROCK Pathway after Cerebral Ischemia/reperfusion Injury in Rat. Journal of Molecular Neuroscience, 70, 71-83.
https://doi.org/10.1007/s12031-019-01402-z
[11]  Xin, H., Li, Y., Liu, Z., Wang, X., Shang, X., Cui, Y., et al. (2013) MiR-133b Promotes Neural Plasticity and Functional Recovery after Treatment of Stroke with Multipotent Mesenchymal Stromal Cells in Rats via Transfer of Exosome-Enriched Extracellular Particles. Stem Cells, 31, 2737-2746.
https://doi.org/10.1002/stem.1409
[12]  Liu, T., Hao, Q., Zhang, Y., Li, Z., Cui, Z. and Yang, W. (2018) Effects of MicroRNA‐133b on Retinal Vascular Endothelial Cell Proliferation and Apoptosis through Angiotensinogen‐Mediated Angiotensin II-Extracellular Signal‐Regulated Kinase 1/2 Signalling Pathway in Rats with Diabetic Retinopathy. Acta Ophthalmologica, 96, e626-e635.
https://doi.org/10.1111/aos.13715
[13]  Chen, L. (2020) The Expanding Regulatory Mechanisms and Cellular Functions of Circular RNAs. Nature Reviews Molecular Cell Biology, 21, 475-490.
https://doi.org/10.1038/s41580-020-0243-y
[14]  Zhou, W., Cai, Z., Liu, J., Wang, D., Ju, H. and Xu, R. (2020) Circular RNA: Metabolism, Functions and Interactions with Proteins. Molecular Cancer, 19, Article No. 172.
https://doi.org/10.1186/s12943-020-01286-3
[15]  Wang, Y.Y., Wang, Y.Z., Zhang, H.Y. and He, Z.Y. (2021) The Role of Circular RNAs in Brain and Stroke. Frontiers in Bioscience (Landmark Ed.), 26, 36-50.
[16]  Zhang, X., Hamblin, M.H. and Yin, K. (2018) Noncoding RNAs and Stroke. The Neuroscientist, 25, 22-26.
https://doi.org/10.1177/1073858418769556
[17]  Zang, J., Lu, D. and Xu, A. (2018) The Interaction of circRNAs and RNA Binding Proteins: An Important Part of circRNA Maintenance and Function. Journal of Neuroscience Research, 98, 87-97.
https://doi.org/10.1002/jnr.24356
[18]  Jeyaseelan, K., Lim, K.Y. and Armugam, A. (2008) MicroRNA Expression in the Blood and Brain of Rats Subjected to Transient Focal Ischemia by Middle Cerebral Artery Occlusion. Stroke, 39, 959-966.
https://doi.org/10.1161/strokeaha.107.500736
[19]  Lusardi, T.A., Farr, C.D., Faulkner, C.L., Pignataro, G., Yang, T., Lan, J., et al. (2009) Ischemic Preconditioning Regulates Expression of microRNAs and a Predicted Target, MeCP2, in Mouse Cortex. Journal of Cerebral Blood Flow & Metabolism, 30, 744-756.
https://doi.org/10.1038/jcbfm.2009.253
[20]  Bam, M., Yang, X., Sen, S., Zumbrun, E.E., Dennis, L., Zhang, J., et al. (2017) Characterization of Dysregulated miRNA in Peripheral Blood Mononuclear Cells from Ischemic Stroke Patients. Molecular Neurobiology, 55, 1419-1429.
https://doi.org/10.1007/s12035-016-0347-8
[21]  Kim, J., Inoue, K., Ishii, J., Vanti, W.B., Voronov, S.V., Murchison, E., et al. (2007) A MicroRNA Feedback Circuit in Midbrain Dopamine Neurons. Science, 317, 1220-1224.
https://doi.org/10.1126/science.1140481
[22]  Zuo, X., Lu, J., Manaenko, A., Qi, X., Tang, J., Mei, Q., et al. (2019) MicroRNA-132 Attenuates Cerebral Injury by Protecting Blood-Brain-Barrier in MCAO Mice. Experimental Neurology, 316, 12-19.
https://doi.org/10.1016/j.expneurol.2019.03.017
[23]  Lopez-Ramirez, M.A., Wu, D., Pryce, G., Simpson, J.E., Reijerkerk, A., King-Robson, J., et al. (2014) MicroRNA-155 Negatively Affects Blood-Brain Barrier Function during Neuroinflammation. The FASEB Journal, 28, 2551-2565.
https://doi.org/10.1096/fj.13-248880
[24]  Lu, W., Chen, Z. and Wen, J. (2021) RhoA/ROCK Signaling Pathway and Astrocytes in Ischemic Stroke. Metabolic Brain Disease, 36, 1101-1108.
https://doi.org/10.1007/s11011-021-00709-4
[25]  Lu, W., Chen, Z. and Wen, J. (2023) The Role of RhoA/ROCK Pathway in the Ischemic Stroke-Induced Neuroinflammation. Biomedicine & Pharmacotherapy, 165, Article ID: 115141.
https://doi.org/10.1016/j.biopha.2023.115141
[26]  Lu, W., Wang, Y. and Wen, J. (2024) The Roles of RhoA/ROCK/NF-κB Pathway in Microglia Polarization Following Ischemic Stroke. Journal of Neuroimmune Pharmacology, 19, Article No. 19.
https://doi.org/10.1007/s11481-024-10118-w
[27]  Zhang, Y., Miao, L., Peng, Q., Fan, X., Song, W., Yang, B., et al. (2022) Parthenolide Modulates Cerebral Ischemia-Induced Microglial Polarization and Alleviates Neuroinflammatory Injury via the RhoA/ROCK Pathway. Phytomedicine, 105, Article ID: 154373.
https://doi.org/10.1016/j.phymed.2022.154373
[28]  Lu, W. and Wen, J. (2022) H2S-Mediated Inhibition of RhoA/ROCK Pathway and Noncoding RNAs in Ischemic Stroke. Metabolic Brain Disease, 38, 163-176.
https://doi.org/10.1007/s11011-022-01130-1
[29]  Feng, S., Zou, L., Wang, H., He, R., Liu, K. and Zhu, H. (2018) RhoA/ROCK-2 Pathway Inhibition and Tight Junction Protein Upregulation by Catalpol Suppresses Lipopolysaccaride-Induced Disruption of Blood-Brain Barrier Permeability. Molecules, 23, Article No. 2371.
https://doi.org/10.3390/molecules23092371
[30]  Feng, S., Zou, L., Wang, H., He, R., Liu, K. and Zhu, H. (2018) RhoA/ROCK-2 Pathway Inhibition and Tight Junction Protein Upregulation by Catalpol Suppresses Lipopolysaccaride-Induced Disruption of Blood-Brain Barrier Permeability. Molecules, 23, Article No. 2371.
https://doi.org/10.3390/molecules23092371
[31]  王煜, 阚伯红, 赵岚, 等. 三焦针法对SAM小鼠血脑屏障通透性的改善作用及通过RhoA/ROCK通路的调控作用[J]. 吉林大学学报(医学版), 2021, 47(5): 1086-1091.
[32]  蔡维平, 陈燕芬, 汤李超, 等. 七叶皂苷钠对细菌性脑膜炎大鼠RhoA/ROCK通路及血脑屏障通透性的影响[J]. 中国微生态学杂志, 2022, 34(6): 644-650.
[33]  崔庆宏. Rho激酶抑制剂对大鼠脑缺血后RhoA、GAP-43和Claudin-5表达的影响[D]: [硕士学位论文]. 北京: 首都医科大学, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133