全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CeBr3探测器γ辐射性能的GEANT4模拟
GEANT4 Simulation of Gamma Radiation Performance of CeBr3 Detector

DOI: 10.12677/nst.2024.123025, PP. 252-262

Keywords: CeBr3探测器,γ射线探测,Geant4,探测效率
CeBr3 Detector
, Gamma Ray Detection, Geant4, Detection Efficiency

Full-Text   Cite this paper   Add to My Lib

Abstract:

砂岩型铀矿资源定量分析是我国研究的主攻方向,现有“直接铀定量”技术受探测晶体限制,不能很好的提取234mPa特征峰。CeBr3晶体作为一种高性能无机闪烁体材料,在核测井、环境监测、核医学等领域得到了广泛应用。本文使用Geant4建立CeBr3探测器的探测模型,对影响探测器探测性质的相关因素进行研究。结果表明:在相同截面积条件下,相较于长方形截面,正方形和圆形截面的CeBr3闪烁体表现出更高的探测效率,其中圆形截面的探测效率最优,同时伴有最大能量沉积。此外,随着入射能量的增加,CeBr3闪烁体的探测效率呈现出下降趋势。当其他条件一致时,选用不同的反射层材料,对探测效率的并无明显影响。通过探测器探测性质的影响因素分析,对基于CeBr3探测器研究和设计具有一定的参考价值和指导意义。
Quantitative analysis of sandstone uranium resources is the main research direction in China. The existing technology for “direct uranium quantification” is limited by the detection crystal, which cannot extract the characteristic peaks of 234mPa.CeBr3 crystal, a high performance inorganic scintillator material, has been widely used in nuclear well logging, environmental monitoring and nuclear medicine. This paper investigates the factors affecting the detection characteristics of the CeBr3 detector by establishing its detection model using Geant4. The results show that CeBr3 scintillators with square and circular cross sections have higher detection efficiencies than those with rectangular cross sections, with the circular cross-section having the best detection efficiency and maximum energy deposition. Furthermore, the detection efficiency of CeBr3 scintillators decreases as the incident energy increases. Other things being equal, the choice of different reflective layer materials has no significant effect on detection efficiency. The analysis of the factors influencing the detector properties provides valuable guidance for the research and design of CeBr3- based detectors.

References

[1]  王飞飞, 刘池洋, 邱欣卫, 等. 世界砂岩型铀矿探明资源的分布及特征[J]. 地质学报, 2017, 91(9): 2021-2046.
https://doi.org/10.19762/j.cnki.dizhixuebao.2017.09.008
[2]  李钊. 铀矿勘查现状及找矿方向的思考[J]. 冶金与材料, 2023, 43(10): 120-122.
[3]  汤彬, 吴永鹏, 张雄杰, 等. 高精度能谱测井与234mPa特征γ射线的“直接铀定量”技术[J]. 核技术, 2012, 35(10): 745-750.
[4]  Czubek, J.A. (1972) Pulsed Neutron Method for Uranium Well Logging. Geophysics, 37, 160-173.
https://doi.org/10.1190/1.1440244
[5]  Givens, W.W. and Stromswold, D.C. (1989) Prompt Fission Neutron Logging for Uranium. Nuclear Geophysics, 3, 299-307.
[6]  吴永鹏, 汤彬, 程建平, 等. 利用LaBr3(Ce)伽马谱仪直接测定铀矿体中铀含量的方法[J]. 物探与化探, 2012, 36(3): 414-417.
[7]  尹旺明, 刘宏章, 汤彬, 等. 基于γ能谱特征峰测定铀矿石样品铀-镭平衡系数[J]. 原子能科学技术, 2010, 44(7): 769-772.
[8]  Ebaid, Y.Y. and Khater, A.E.M. (2017) The Re-Evaluation of the 234mPa’s 1001.03 keV Gamma Emission Absolute Intensity for the Precise Assessment of 238U. Journal of Envirenmental Radioactivity, 170, 203-208.
https://doi.org/10.1016/j.jenvrad.2017.01.018
[9]  Yucel, H., Cetiner, M.A. and Demirel, H. (1998) Use of the 1001 keV peak of 234mPa Daughter of 238U in Measurement of Uranium Concentration by HPGe Gamma-Ray Spectrometry. Nuclear Instruments and Methods in Physics Research-Section A, 413, 74-82.
https://doi.org/10.1016/S0168-9002(98)00562-2
[10]  Quaratif, G.A., Dorenbos, P., Vander, B.J., et al. (2013) Scintillation and Detection Characteristics of High Sensitivity CeBr3 Gamma Ray Spectrometers. Nuclear Instruments and Methods in Physics Research A, 729, 596-604.
https://doi.org/10.1016/j.nima.2013.08.005
[11]  Sibczynskip, P., Broslawskia, A., Goiskaa, A., et al. (2017) Characterization of Some Modern Scintillators Recommended for Use on Large Fusion Facilities in Gamma-Ray Spectroscopy and Tomographic Measurements of Gamma-Emission Profiles. Nukleonika, 62, 223-228.
https://doi.org/10.1515/nuka-2017-0032
[12]  武欢, 李海林, 何晔, 等. 溴化铈晶体的阴阳离子共掺生长方法研究[J]. 压电与声光, 2020, 42(2): 245-247.
[13]  Idoeta, R., Herranz, M., Alegría, N., et al. (2021) Possibilities of the Use of CeBr3 Scintillation Detectors for the Measurement of the Content of Radionuclides in Samples for Environmental Monitoring. Applied Radiation & Isotopes, 176, Article 109881.
https://doi.org/10.1016/j.apradiso.2021.109881
[14]  周倩倩, 侯越云, 梁珺成. 一种新型CeBr3闪烁体探测器性能研究[J]. 原子能科学技术, 2018, 52(2): 371-377.
[15]  Kaburagim, M., Shimazoe, K., Kato, M., et al. (2021) Gamma-Ray Spectroscopy with a CeBr3 Scintillator under Intense γ-Ray Fields for Nuclear Decommissioning. Nuclear Instruments and Methods in Physics Research-Section A, 988, Article 164900.
https://doi.org/10.1016/j.nima.2020.164900
[16]  Kaburagim, M., Shimazoe, K., Otaka, Y., et al. (2020) A Cubic CeBr3 Gamma-Ray Spectrometer Suitable for the Decommissioning of the Fukushima Daiichi Nuclear Power Station. Nuclear Instruments and Methods in Physics Research-Section A, 971, Article 164118.
https://doi.org/10.1016/j.nima.2020.164118
[17]  张悦, 景泽坤, 郭亚昆, 等. 无机纳米闪烁体的研究进展[J]. 功能材料, 2023, 54(8): 8054-8062.
[18]  Gupta, S.K. and Mao, Y. (2020) Recent Advances, Challenges and Opportunities of Inorganic Nanoscintillators. Frontiers of Optoelectronics, 13, 156-187.
https://doi.org/10.1007/s12200-020-1003-5
[19]  Giani, S., et al. (1998) GEANT4—An Object-Oriented Toolkit for Simulation in HEP, CERN/LHCC 98-44.
[20]  Wellisch, J.P. (2001) Hadronic Shower Models in GEANT4—The Frameworks. Computer Physics Communications, 140, 65-75.
https://doi.org/10.1016/S0010-4655(01)00256-9
[21]  陈志强, 陈晶晶, 舒双宝, 等. LaBr3(Ce)探测器探测效率影响因素研究[J]. 核技术, 2022, 45(1): 58-64.
[22]  袁航, 单伟, 赵梦薇, 等. 反射层对NaI(Tl)闪烁体探测器探测效率的影响[J]. 科技视界, 2021(10): 90-92.
https://doi.org/10.19694/j.cnki.issn2095-2457.2021.10.28
[23]  Agostinelli, S., et al. (2003) GEANT4—A Simulation Toolkit. Nuclear Instruments and Methods in Physics Research-Section A, 506, 250-303.
[24]  Anil, K.G., Mazumdar, I. and Gothe, D.A. (2009) Efficiency Calibration and Simulation of a LaBr3(Ce) Detector in Close-Geometry. Nuclear Instruments and Methods in Physics Research-Section A, 609, 183-186.
https://doi.org/10.1016/j.nima.2009.08.045
[25]  Weisshaar, D., Wallace, M.S., Adrich, P., et al. (2008) LaBr3: Ce Scintillators for In-Beam Gamma-Ray Spectroscopy with Fast Beams of Rare Isotopes. Nuclear Instruments and Methods in Physics Research-Section A, 594, 56-60.
https://doi.org/10.1016/j.nima.2008.06.008
[26]  Blasi, N., Giaz, A., Boiano, C., et al. (2016) Position Sensitivity in Large Spectroscopic LaBr3: Ce Crystals for Doppler Broadening Correction. Nuclear Instruments and Methods in Physics Research-Section A, 839, 23-28.
https://doi.org/10.1016/j.nima.2016.09.039
[27]  钟丁生, 蔡小杰, 张志峰, 等. LaBr3晶体几何因素对发光效率及探测效率影响模拟研究[J]. 核电子学与探测技术, 2019, 39(6): 664-667.
[28]  曾国强, 朱珠, 葛良全, 等. 水体γ放射性测量中高纯锗探测效率刻度[J]. 核技术, 2017, 40(12): 37-42.
https://doi.org/10.11889/j.0253-3219.2017.hjs.40.120402

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133