全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于产业链视角下的中国新能源车行业的系统性风险度量
Systemic Risk Measurement of China’s New Energy Vehicle Industry Based on Industry Chain Perspective

DOI: 10.12677/jlce.2024.133014, PP. 138-156

Keywords: 新能源车产业链,系统性风险,ΔCoVaRMES
New Energy Vehicle Industry Chain
, Systemic Risk, ΔCoVaR, MES

Full-Text   Cite this paper   Add to My Lib

Abstract:

在“双碳”宏观背景下,新能源汽车产业链为中国经济高质量发展的重要引擎,是国计民生的重要行业。近年来,新能源汽车产业链正面临经济外部环境不确定性和内部双向风险的双重挑战,严重威胁其可持续发展。本文基于2018年至2023年的日收益率数据,实证研究新能源车产业链各行业与市场在不同情境下的系统性风险状况。研究发现,新能源车产业链存在系统性风险,且行业收益率的波动存在顺周期性。各行业各时期抵御风险的能力有所不同,当新能源车市场收益率处于极端下跌状况时,与市场相关性较高的中上游行业对整个市场溢出水平较高,下游行业的风险溢出程度较低。基于研究结论,本文根据不同市场主体提出了提高中国企业在全球新能源产业链的掌控力、降低投资组合的系统性风险、保持政策稳定性与前瞻性、落实落地激励政策等建议,旨在推动新能源汽车产业的健康、稳定和可持续发展。
Under the macro background of “double carbon”, the new energy automobile industry chain is an important engine for China’s high-quality economic development, and an important industry for national economy and people’s livelihood. In recent years, the new energy automobile industry chain is facing the dual challenges of uncertainty in the external economic environment and internal two-way risks, which seriously threaten its sustainable development. Based on the daily yield data from 2018 to 2023, this paper empirically studies the systemic risk status of each industry and market in the new energy vehicle industry chain under different scenarios. It is found that there is systemic risk in the new energy vehicle industry chain, and the fluctuation of industry yields is procyclical. The ability of each industry to withstand risk varies in each period, and when the new energy vehicle market yield is in extreme downturn, the middle and upstream industries with higher correlation with the market have higher level of spillover to the whole market, and the downstream industries have lower level of risk spillover. Based on the conclusions of the study, this paper puts forward suggestions based on different market players to improve the control of Chinese enterprises in the global new energy industry chain, reduce the systemic risk of the investment portfolio, maintain the stability and foresight of the policy, and implement the incentive policies, aiming to promote the healthy, stable and sustainable development of the new energy vehicle industry.

References

[1]  孙超, 刘波, 孙逢春. 新能源汽车节能规划与控制技术研究综述[J]. 汽车安全与节能学报, 2022, 13(4): 593-616.
[2]  吴金明, 邵昶. 产业链形成机制研究——“4+4+4”模型[J]. 中国工业经济, 2006(4): 36-43.
[3]  刘贵富. 产业链的基本内涵研究[J]. 工业技术经济, 2007(8): 92-96.
[4]  李文辉. 新能源汽车产业链构建研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2012.
[5]  汪淑芳. 中国新能源汽车产业链优化研究[D]: [硕士学位论文]. 上海: 东华大学, 2015.
[6]  王静宇. 中国新能源汽车产业联盟发展现状及技术创新模式研究[J]. 科技管理研究, 2016, 36(22): 162-171.
[7]  罗贞礼. 从新能源汽车产业价值链看我国动力锂离子电池产业的创新发展[J]. 新材料产业, 2010(10): 66-71.
[8]  李克卿, 陆文星, 梁昌勇. 管理视角下中国新能源汽车动力电池的回顾与展望[J]. 科技管理研究, 2020, 40(5): 173-177.
[9]  陈云香, 孙华平, 张茜, 等. 价值链曲线视角下中国新能源汽车电池产业转型升级策略研究[J]. 经济研究参考, 2019(9): 46-51.
[10]  Horowitz, J. and Coffin, D. (2018) The Supply Chain for Electric Vehicle Batteries. Journal of International Commerce and Economics, 1-21.
[11]  Li, L., Dababneh, F. and Zhao, J. (2018) Cost-Effective Supply Chain for Electric Vehicle Battery Remanufacturing. Applied Energy, 226, 277-286.
https://doi.org/10.1016/j.apenergy.2018.05.115
[12]  Baars, J., Domenech, T., Bleischwitz, R., Melin, H.E. and Heidrich, O. (2020) Circular Economy Strategies for Electric Vehicle Batteries Reduce Reliance on Raw Materials. Nature Sustainability, 4, 71-79.
https://doi.org/10.1038/s41893-020-00607-0
[13]  刘燕玲. 北京纯电动汽车产业链构建研究[D]: [硕士学位论文]. 北京: 北京工业大学, 2012.
[14]  张庆彩, 吴椒军, 张先锋. 我国新能源汽车产业链协同发展升级的运行机制及路径探究[J]. 生态经济, 2013(10): 122-125.
[15]  Yan, Q., Zhang, M., Li, W. and Qin, G. (2020) Risk Assessment of New Energy Vehicle Supply Chain Based on Variable Weight Theory and Cloud Model: A Case Study in China. Sustainability, 12, Article 3150.
https://doi.org/10.3390/su12083150
[16]  张晓朴. 系统性金融风险研究: 演进、成因与监管[J]. 国际金融研究, 2010(7): 58-67.
[17]  Shmidt, A.V. and Khudyakova, T.A. (2015) Analysis of the Influence of the Uncertainty of the External Environment on the Financial and Economic Sustainability of Industrial Enterprises. Mediterranean Journal of Social Sciences, 6, 465.
https://doi.org/10.5901/mjss.2015.v6n6s2p465
[18]  黎峰, 曹晓蕾, 陈思萌. 中美贸易摩擦对中国制造供应链的影响及应对[J]. 经济学家, 2019(9): 104-112.
[19]  杨蓉. 新能源汽车产业链溢出效应研究[D]: [硕士学位论文]. 成都: 四川大学, 2022.
[20]  徐美玲. 新能源汽车企业生存风险影响机理及评价研究[D]: [硕士学位论文]. 太原: 太原理工大学, 2022.
[21]  吴锦泽, 蔡思彤, 王明旭, 等. 广东省新能源汽车产业政策环境风险研究[J]. 环境科学与管理, 2022, 47(9): 10-14.
[22]  薛震. 新能源汽车产业化过程中的风险及其规避[J]. 商业时代, 2009(14): 113-114.
[23]  赵树然, 张洁, 李金宸, 等. 波动分解视角下中国能源业系统性风险溢出[J]. 资源科学, 2023, 45(3): 637-651.
[24]  王昶, 孙晶, 左绿水, 等. 新能源汽车关键原材料全球供应风险评估[J]. 中国科技论坛, 2018(4): 83-93.
[25]  郝琼芳. 新能源汽车行业财务风险及对策研究——以A公司为例[J]. 财会学习, 2019(36): 229-230.
[26]  范小群, 谭冰. 新能源汽车产业政策风险研究[J]. 时代汽车, 2021(23): 133-135.
[27]  孙嘉辉. 新能源汽车供应链中断风险传播及控制策略研究[D]: [硕士学位论文]. 长春: 吉林大学, 2022.
[28]  Brownlees, C.T. and Engle, R.F. (2011) Volatility, Correlation and Tails for Systemic Risk Measurement. Social Science Research Network, Working Paper.
[29]  Adrian, T. and Brunnermeier, M. (2011) CoVaR. Nber Working Paper Series, Working Paper 17454.
[30]  Acharya, V., Pedersenand, L. and Philippon, T. (2011) Measuring Systemic Risk. AFA2011 Denver Meetings Paper.
[31]  赵进文, 韦文彬, 基于MES测度我国银行业系统性风险[J]. 金融监管研究, 2012(8): 28-40.
[32]  宋清华, 姜玉东. 中国上市银行系统性风险度量——基于MES方法的分析[J]. 财经理论与实践, 2014, 35(6): 2-7.
[33]  白雪梅, 石大龙. 中国金融体系的系统性风险度量[J]. 国际金融研究, 2014(6): 75-85.
[34]  卜林, 李政. 我国上市金融机构系统性风险溢出研究——基于CoVaR和MES的比较分析[J]. 当代财经, 2015(6): 55-65.
[35]  王培辉, 尹成远, 袁薇. 我国保险业系统性风险溢出效应研究——基于时变Copula-CoVaR模型[J]. 南方金融, 2017(2): 14-24.
[36]  袁馨蕾. 我国上市保险公司系统性风险评估[D]: [硕士学位论文]. 武汉: 中南财经政法大学, 2019.
[37]  王周伟, 吕思聪, 茆训诚. 基于风险溢出关联特征的CoVaR计算方法有效性比较及应用[J]. 经济评论, 2014, 188(4): 148-160.
[38]  王朝阳, 陈宇峰, 金曦. 国际油价对中国新能源市场的传导效应研究[J]. 数量经济技术经济研究, 2018, 35(4): 131-146.
[39]  Girardi, G. and Tolga Ergün, A. (2013) Systemic Risk Measurement: Multivariate GARCH Estimation of CoVaR. Journal of Banking & Finance, 37, 3169-3180.
https://doi.org/10.1016/j.jbankfin.2013.02.027
[40]  Chang, K., Ye, Z. and Wang, W. (2019) Volatility Spillover Effect and Dynamic Correlation between Regional Emissions Allowances and Fossil Energy Markets: New Evidence from China’s Emissions Trading Scheme Pilots. Energy, 185, 1314-1324.
https://doi.org/10.1016/j.energy.2019.07.132
[41]  Balc?lar, M., Demirer, R., Hammoudeh, S. and Nguyen, D.K. (2016) Risk Spillovers across the Energy and Carbon Markets and Hedging Strategies for Carbon Risk. Energy Economics, 54, 159-172.
https://doi.org/10.1016/j.eneco.2015.11.003
[42]  余珂, 沈子杰, 薛秋霞. 国际原油期货与中国新能源股指市场动态相关性研究——基于DCC-GARCH模型[J]. 时代金融, 2023(10): 22-24.
[43]  韩方园, 卢俊香. 房地产业与商业银行间风险溢出效应研究——基于DCC-GARCH-CoVaR模型[J]. 云南民族大学学报(自然科学版), 2023, 32(4): 533-540.
[44]  Adrian, T. and Brunnermeier, M.K. (2016) CoVaR. American Economic Review, 106, 1705-1741.
https://doi.org/10.1257/aer.20120555

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133