|
Modern Management 2024
农业强国建设背景下农机区域社会化服务协同优化研究
|
Abstract:
二十大会议上,提出的农业强国建设理念,让农业现代化建设问题受到更加广泛的关注,农机社会化服务水平成为农业现代化建设的重要一环,但我国仍存在较多地区还未实现生产现代化,基础设施较为落后的问题。在综合考虑农机调度实际情况下农机调度成本和农户满意度的基础上,利用带时间窗的车辆路径问题模型的优点,建立单站点多农机的区域协同调度模型,采用遗传算法求解双变量,并通过宿迁地区实例验证了该模型算法的有效性。研究表明,该模式能有效降低调度成本与提高农户满意度,从而实现农机社会化服务水平的提高,进一步实现区域协同模式下的农机调度还需要深入切实农户多种满意度采集工作、整合聚类农田信息,提高农机合作社管理与服务能力以适应我国不同地区的实际需求和提高应对突发事件的能力水平。
The concept of building up China’s strength in agriculture proposed at the 20th National Congress has attracted attention to the issue of building agricultural modernization. The level of socialized agricultural machinery services has become an important indicator of agricultural modernization construction, but there are still many areas in China that have not yet achieved the modernization of production and have relatively backward infrastructure. On the basis of comprehensively considering the cost of agricultural machinery scheduling and the satisfaction of farmers under the actual situation of agricultural machinery scheduling, the advantages of the vehicle path problem model with time window are used to establish the regional cooperative scheduling model of single site and multiple agricultural machinery, and the genetic algorithm is used to solve it Bivariate, and the effectiveness of the modified model algorithm is verified by examples in Suqian area. Research shows that the model can effectively reduce the scheduling cost and improve farmers satisfaction, so as to realize the improvement of agricultural machinery socialization service level. To further achieve agricultural machinery scheduling under regional collaborative mode, it is necessary to deeply and effectively collect various satisfaction levels from farmers, integrate and cluster farmland information, improve the management and service capabilities of agricultural machinery cooperatives to meet the actual needs of different regions in China, and enhance their ability to handle emergencies.
[1] | 蒲晓磊. 为加快建设农业强国贡献力量[N]. 法治日报, 2022-10-19(001). |
[2] | 吴宇雄. 坚决扛稳粮食安全政治责任筑牢八桂粮食安全防线[J]. 中国粮食经济, 2021(8): 28-30. |
[3] | 刘旭, 李文华, 赵春江, 闵庆文, 杨信廷, 刘某承. 面向2050年我国现代智慧生态农业发展战略研究[J]. 中国工程科学, 2022, 24(1): 38-45. |
[4] | Conesa-Mu?oz, J., Bengochea-Guevara, J.M., Andujar, D. and Ribeiro, A. (2016) Route Planning for Agricultural Tasks: A General Approach for Fleets of Autonomous Vehicles in Site-Specific Herbicide Applications. Computers and Electronics in Agriculture, 127, 204-220. https://doi.org/10.1016/j.compag.2016.06.012 |
[5] | Seyyedhasani, H. and Dvorak, J.S. (2017) Using the Vehicle Routing Problem to Reduce Field Completion Times with Multiple Machines. Computers and Electronics in Agriculture, 134, 142-150. https://doi.org/10.1016/j.compag.2016.11.010 |
[6] | 王猛, 赵博, 刘阳春, 汪凤珠, 伟利国, 方宪法. 基于多变异分组遗传算法的多机协同作业静态任务分配[J]. 农业机械学报, 2021, 52(7): 19-28. |
[7] | 张帆, 罗锡文, 张智刚, 何杰, 张闻宇. 基于改进多父辈遗传算法的农机调度优化方法[J]. 农业工程学报, 2021, 37(9): 192-198. |
[8] | Darby-Dowman, K., Barker, S., Audsley, E. and Parsons, D. (2000) A Two-Stage Stochastic Programming with Recourse Model for Determining Robust Planting Plans in Horticulture. Journal of the Operational Research Society, 51, 83-89. https://doi.org/10.1057/palgrave.jors.2600858 |
[9] | Guan, S., Nakamura, M., Shikanai, T. and Okazaki, T. (2009) Resource Assignment and Scheduling Based on a Two-Phase Metaheuristic for Cropping System. Computers and Electronics in Agriculture, 66, 181-190. https://doi.org/10.1016/j.compag.2009.01.011 |
[10] | Edwards, G.T.C., Hinge, J., Skou-Nielsen, N., Villa-Henriksen, A., S?rensen, C.A.G. and Green, O. (2017) Route Planning Evaluation of a Prototype Optimised Infield Route Planner for Neutral Material Flow Agricultural Operations. Biosystems Engineering, 153, 149-157. https://doi.org/10.1016/j.biosystemseng.2016.10.007 |
[11] | Seyyedhasani, H. and Dvorak, J.S. (2018) Reducing Field Work Time Using Fleet Routing Optimization. Biosystems Engineering, 169, 1-10. https://doi.org/10.1016/j.biosystemseng.2018.01.006 |
[12] | 张璠, 滕桂法, 苑迎春, 王克俭, 范铁钢, 张昱婷. 农机跨区作业紧急调配算法适宜性选择[J]. 农业工程学报, 2018, 34(5): 47-53. |