All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Investigation of the Micro-Mechanics of an Extruded Precipitation-Strengthened Magnesium Alloy under Cyclic Loading

DOI: 10.4236/msce.2024.127004, PP. 40-52

Keywords: Cyclic Deformation, Magnesium Alloy, In-Situ Neutron Diffraction, Precipitation Strengthening, Crystal Plasticity, Lattice Strain, Mechanism Evolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip.

References

[1]  Xu, T., Yang, Y., Peng, X., Song, J. and Pan, F. (2019) Overview of Advancement and Development Trend on Magnesium Alloy. Journal of Magnesium and Alloys, 7, 536-544. https://doi.org/10.1016/j.jma.2019.08.001
[2]  Peng, Q., Ma, N., Li, X. and Zhang, J. (2012) Age Hardening Response of a Mg-5wt.%Sc Alloy under an Applied Stress Field. Materials Letters, 78, 58-61. https://doi.org/10.1016/j.matlet.2012.03.063
[3]  Agnew, S.R., Mulay, R.P., Polesak, F.J., Calhoun, C.A., Bhattacharyya, J.J. and Clausen, B. (2013) In Situ Neutron Diffraction and Polycrystal Plasticity Modeling of a Mg-Y-Nd-Zr Alloy: Effects of Precipitation on Individual Deformation Mechanisms. Acta Materialia, 61, 3769-3780. https://doi.org/10.1016/j.actamat.2013.03.010
[4]  Rosalie, J.M., Somekawa, H., Singh, A. and Mukai, T. (2012) The Effect of Size and Distribution of Rod-Shaped Precipitates on the Strength and Ductility of a Mg-Zn Alloy. Materials Science and Engineering: A, 539, 230-237. https://doi.org/10.1016/j.msea.2012.01.087
[5]  Pahlevanpour, A.H., Behravesh, S.B., Adibnazari, S. and Jahed, H. (2019) Characterization of Anisotropic Behaviour of ZK60 Extrusion under Stress-Control Condition and Notes on Fatigue Model-ing. International Journal of Fatigue, 127, 101-109. https://doi.org/10.1016/j.ijfatigue.2019.05.030
[6]  Wu, B.L., Duan, G.S., Du, X.H., Song, L.H., Zhang, Y.D., Philippe, M.J., et al. (2017) In Situ Investigation of Extension Twinning-Detwinning and Its Effect on the Mechanical Behavior of AZ31B Magnesium Alloy. Materials & Design, 132, 57-65. https://doi.org/10.1016/j.matdes.2017.06.023
[7]  Guillemer, C., Clavel, M. and Cailletaud, G. (2011) Cyclic Behavior of Extruded Magnesium: Experimental, Microstructural and Numerical Approach. International Journal of Plasticity, 27, 2068-2084. https://doi.org/10.1016/j.ijplas.2011.06.002
[8]  Dong, S., Yu, Q., Jiang, Y., Dong, J., Wang, F., Jin, L., et al. (2017) Characteristic Cyclic Plastic Deformation in ZK60 Magnesium Alloy. International Journal of Plasticity, 91, 25-47. https://doi.org/10.1016/j.ijplas.2017.01.005
[9]  Briffod, F., Shiraiwa, T. and Enoki, M. (2020) Monotonic and Cyclic Anisotropies of an Extruded Mg-Al-Ca-Mn Alloy Plate: Experiments and Crystal Plasticity Studies. Materials Science and Engineering: A, 772, Article ID: 138753. https://doi.org/10.1016/j.msea.2019.138753
[10]  Xie, D., Lyu, Z., Li, Y., Liaw, P.K., Chew, H.B., Ren, Y., et al. (2021) In Situ Monitoring of Dislocation, Twinning, and Detwinning Modes in an Extruded Magnesium Alloy under Cyclic Loading Conditions. Materials Science and Engineering: A, 806, Article ID: 140860. https://doi.org/10.1016/j.msea.2021.140860
[11]  Xie, D., Li, Z.H., Sasaki, T.T., Gao, Y.F., Lyu, Z.Y., Feng, R., et al. (2023) Identifying the Effect of Coherent Precipitates on the Deformation Mechanisms by in Situ Neutron Diffraction in an Extruded Magnesium Alloy under Low-Cycle Fatigue Conditions. Acta Materialia, 251, Article ID: 118903. https://doi.org/10.1016/j.actamat.2023.118903
[12]  Li, H., Kang, G. and Yu, C. (2020) Modeling Uniaxial Ratchetting of Magnesium Alloys by a New Crystal Plasticity Considering Dislocation Slipping, Twinning and Detwinning Mechanisms. International Journal of Mechanical Sciences, 179, Article ID: 105660. https://doi.org/10.1016/j.ijmecsci.2020.105660
[13]  Lee, S.Y., Wang, H., Gharghouri, M.A., Nayyeri, G., Woo, W., Shin, E., et al. (2014) Deformation Behavior of Solid-Solution-Strengthened Mg-9 Wt.% Al Alloy: In Situ Neutron Diffraction and Elastic-Viscoplastic Self-Consistent Modeling. Acta Materialia, 73, 139-148. https://doi.org/10.1016/j.actamat.2014.03.038
[14]  Nakata, T., Xu, C., Ajima, R., Shimizu, K., Hanaki, S., Sasaki, T.T., et al. (2017) Strong and Ductile Age-Hardening Mg-Al-Ca-Mn Alloy That Can Be Extruded as Fast as Aluminum Alloys. Acta Materialia, 130, 261-270. https://doi.org/10.1016/j.actamat.2017.03.046
[15]  Wang, H., Wu, P.D., Tomé, C.N. and Huang, Y. (2010) A Finite Strain Elastic-Viscoplastic Self-Consistent Model for Polycrystalline Materials. Journal of the Mechanics and Physics of Solids, 58, 594-612. https://doi.org/10.1016/j.jmps.2010.01.004
[16]  Wang, H., Wu, P.D., Tomé, C.N. and Wang, J. (2012) Study of Lattice Strains in Magnesium Alloy AZ31 Based on a Large Strain Elastic-Viscoplastic Self-Consistent Polycrystal Model. International Journal of Solids and Structures, 49, 2155-2167. https://doi.org/10.1016/j.ijsolstr.2012.04.026
[17]  Wang, H., Clausen, B., Tomé, C.N. and Wu, P.D. (2013) Studying the Effect of Stress Relaxation and Creep on Lattice Strain Evolution of Stainless Steel under Tension. Acta Materialia, 61, 1179-1188. https://doi.org/10.1016/j.actamat.2012.10.027
[18]  Zhang, X., Zhou, K., Wang, H., Jiang, Y., Sun, X., Liu, C., et al. (2023) On the Cyclic Torsion Behavior of Extruded AZ61A Magnesium Alloy Tube. International Journal of Fatigue, 174, Article ID: 107704. https://doi.org/10.1016/j.ijfatigue.2023.107704
[19]  Qiao, H., Agnew, S.R. and Wu, P.D. (2015) Modeling Twinning and Detwinning Behavior of Mg Alloy ZK60A during Monotonic and Cyclic Loading. International Journal of Plasticity, 65, 61-84. https://doi.org/10.1016/j.ijplas.2014.08.010

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133