|
Preclinical Verification of Modulated Electro-Hyperthermia
|
Abstract:
The treatments of malignant diseases nowadays are rapidly developing. One of the groups of novel therapies applies electromagnetic fields to destroy the malignant lesions. The thermal (heating) and nonthermal (polarization, molecular excitations) processes are combined in novel methods. The non-ionizing energy absorption from the electric field may produce substantial heat, increasing the targeted lesion’s temperature and inducing hyperthermic effects. The modulated electro-hyperthermia (mEHT) uses thermal conditions to optimize and accelerate the chemical reactions induced by the nonthermal excitation of the electric field. The mEHT cooperates with the body’s homeostatic control and harmonizes the mutual efforts to destroy the malignancy. Our objective is to show in vivo proof of the combined complementary electromagnetic impact on various tumors produced by mEHT. Furthermore, we present evidence of the increasing efficacy of the complementary application of mEHT with conventional treatments.
[1] | Escargueil, A. (2023) Feature Reviews in Cancer Therapy. https://www.mdpi.com/journal/cancers/special_issues/reviews_cancer_therapy |
[2] | Siegel, R.L., Giaquinto, A.N. and Jemal, A. (2024) Cancer Statistics, 2024. CA: A Cancer Journal for Clinicians, 74, 12-49. https://doi.org/10.3322/caac.21820 |
[3] | Pancholi, N.J. (2924) Experts Forecast 2024, Part 4: Cutting-Edge Tech for Oncology Drug Discovery, Cancer Research Catalyst. https://www.aacr.org/blog/2024/01/31/experts-forecast-2024-part-4-cutting-edge-tech-for-oncology-drug-discovery/ |
[4] | Szasz, A. (2021) Therapeutic Basis of Electromagnetic Resonances and Signal-Modulation. Open Journal of Biophysics, 11, 314-350. https://doi.org/10.4236/ojbiphy.2021.113011 |
[5] | Szasz, A. (2022) Time-Fractal Modulation—Possible Modulation Effects in Human Therapy. Open Journal of Biophysics, 12, 38-87. https://doi.org/10.4236/ojbiphy.2022.121003 |
[6] | Szasz, A. and Szasz, O. (2020) Time-Fractal Modulation of Modulated Electro-Hyperthermia (MEHT). In: Szasz, A., Ed., Book Challenges and Solutions of Oncological Hyperthermia, Cambridge Scholars, 377-415. |
[7] | Szasz, O. and Szasz, A. (2016) Nanothermia: A Heterogenic Heating Approach. Journal of Cancer Research and Therapeutics, 12, 1132-1137. https://doi.org/10.4103/0973-1482.197568 |
[8] | Szasz, O. (2019) Bioelectromagnetic Paradigm of Cancer Treatment—Modulated Electro-Hyperthermia (MEHT). Open Journal of Biophysics, 9, 98-109. https://doi.org/10.4236/ojbiphy.2019.92008 |
[9] | Szasz, A. (2022) Heterogeneous Heat Absorption Is Complementary to Radiotherapy. Cancers, 14, Article 901. https://doi.org/10.3390/cancers14040901 |
[10] | Szasz, A. (2024) Preclinical Verification of Modulated Electro-Hyperthermia. Part I. in Vitro Research. International Journal of Clinical Medicine. |
[11] | Bini, M., Ignesti, A., Millanta, L., et al. (1985) An Unbalanced Electric Applicator for RF Hyperthermia. IEEE Transactions on Biomedical Engineering, 32, 638-641. https://doi.org/10.1109/TBME.1985.325596 |
[12] | Krenacs, T., Meggyeshazi, N., Forika, G., et al. (2020) Modulated Electro-Hyperthermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models. International Journal of Molecular Sciences, 21, Article 6270. https://doi.org/10.3390/ijms21176270 |
[13] | Andocs, G., Osaki, T., Tsuka, T., Imagawa, T., et al. (2013) Oncothermia Research at Preclinical Level. Hindawi Publishing Corporation Conference Papers in Medicine, 2013, Article ID: 272467. http://Www.Hindawi.Com/Archive/2013/272467/ |
[14] | Szasz, A., Szasz, N. and Szasz, O. (2010) Oncothermia—Principles and Practices. Springer Science. https://link.springer.com/book/10.1007/978-90-481-9498-8 |
[15] | Szasz, A., Szasz, O. and Szasz, N. (2006) Physical Background and Technical Realization of Hyperthermia. In: Baronzio, G.F. and Hager, E.D., Eds., Hyperthermia in Cancer Treatment: A Primer, Springer, 27-59. https://doi.org/10.1007/978-0-387-33441-7_3 |
[16] | Szasz, A. (2015) Bioelectromagnetic Paradigm of Cancer Treatment Oncothermia. In: Rosch, P.J., Ed., Bioelectromagnetic and Subtle Energy Medicine, CRC Press and Taylor & Francis Group, 323-336. |
[17] | Szasz, A. (2014) Oncothermia: Complex Therapy by EM and Fractal Physiology. 2014 XXXIth URSI General Assembly and Scientific Symposium, Beijing, 16-23 August 2014. |
[18] | Kim, W., Kim, M.S., Kim, H.J., et al. (2017) Role of HIF-1α in Response of Tumors to a Combination of Hyperthermia and Radiation in vivo. International Journal of Hyperthermia, 34, 276-283. https://doi.org/10.1080/02656736.2017.1335440 |
[19] | Portoro, I., Danics, L. and Veres, D. (2018) Increased Efficacy in Treatment of Glioma by a New Modulated Electro-Hyperthermia (MEHT) Protocol. Oncothermia Journal, 24, 344-356. |
[20] | Danics, L., Schvarcz, C.S., Viana, P., et al. (2020) Exhaustion of Protective Heat Shock Response Induces Significant Tumor Damage by Apoptosis after Modulated Electro-Hyperthermia Treatment of Triple Negative Breast Cancer Isografts in Mice. Cancers, 12, Article 2581. https://pubmed.ncbi.nlm.nih.gov/32927720/ |
[21] | Jeon, T.-W., Yang, H., Lee, C.G., O, S.T., et al. (2016) Electro-Hyperthermia Up-Regulates Tumour Suppressor Septin 4 to Induce Apoptotic Cell Death in Hepatocellular Carcinoma. International Journal of Hypertension, 7, 1-9. https://doi.org/10.1080/02656736.2016.1186290 |
[22] | Cha, J., Jeon, T.-W., Lee, C.-G., et al. (2015) Electro-Hyperthermia Inhibits Glioma Tumorigenicity Through the Induction of E2F1-Mediated Apoptosis. International Journal of Hyperthermia, 31, 784-792. https://doi.org/10.3109/02656736.2015.1069411 |
[23] | Meggyeshazi, N., Andocs, G., Balogh, L., et al. (2014) DNA Fragmentation and Caspase-Independent Programmed Cell Death by Modulated Electrohyperthermia. Strahlentherapie und Onkologie, 190, 815-822. https://doi.org/10.1007/s00066-014-0617-1 |
[24] | Andocs, G., Meggyeshazi, N., Balogh, L., et al. (2014) Upregulation of Heat Shock Proteins and the Promotion of Damage-Associated Molecular Pattern Signals in a Colorectal Cancer Model by Modulated Electrohyperthermia. Cell Stress and Chaperones, 20, 37-46. https://doi.org/10.1007/s12192-014-0523-6 |
[25] | Meggyeshazi, N., Andocs, G. and Krenacs, T. (2013) Programmed Cell Death Induced by Modulated Electro-Hyperthermia. Hindawi Publishing Corporation Conference Papers in Medicine, 2013, Article ID: 187835. |
[26] | Vancsik, T., Kovago, C.S., Kiss, E., et al. (2018) Modulated Electro-Hyperthermia Induced Loco-Regional and Systemic Tumor Destruction in Colorectal Cancer Allografts. Journal of Cancer, 9, 41-53. https://doi.org/10.7150/jca.21520 |
[27] | Tsang, Y.-W., Huang, C.-C., Yang, K.-L., et al. (2015) Improving Immunological Tumor Microenvironment Using Electro-Hyperthermia Followed by Dendritic Cell Immunotherapy. BMC Cancer, 15, Article 708. http://Www.Ncbi.Nlm.Nih.Gov/Pubmed/26472466 |
[28] | Vancsik, T., Mathe, D., Horvath, I., et al. (2021) Modulated Electro-Hyperthermia Facilitates NK-Cell Infiltration and Growth Arrest of Human A2058 Melanoma in a Xenograft Model. Frontiers in Oncology, 11, Article 590764. https://www.frontiersin.org/articles/10.3389/fonc.2021.590764/full |
[29] | Kuo, I.-M., Lee, J.-J., Wang, Y.-S., et al. (2020) Potential Enhancement of Host Immunity and Anti-Tumor Efficacy of Nanoscale Curcumin and Resveratrol in Colorectal Cancers by Modulated Electro-Hyperthermia. BMC Cancer, 20, Article 603. https://pubmed.ncbi.nlm.nih.gov/32600429/ |
[30] | Besztercei, B., Vancsik, T., Benedek, A., et al. (2019) Stress-Induced, P53-Mediated Tumor Growth Inhibition of Melanoma by Modulated Electrohyperthermia in Mouse Models Without Major Immunogenic Effects. International Journal of Molecular Sciences, 20, Article 4019. https://Www.Mdpi.Com/1422-0067/20/16/4019 |
[31] | Kim, H., Kim, D., Kim, W., et al. (2022) The Efficacy of Radiation Is Enhanced by Metformin and Hyperthermia Alone or Combined against FSaII Fibrosarcoma in C3H Mice. Radiation Research, 198, 190-199. https://doi.org/10.1667/RADE-21-00231.1 |
[32] | Prasad, B., Kim, S., Cho, W., et al. (2019) Quantitative Estimation of the Equivalent Radiation Dose Escalation Using Radiofrequency Hyperthermia in Mouse Xenograft Models of Human Lung Cancer. Nature, 9, Article 3942. https://www.nature.com/articles/s41598-019-40595-6 |
[33] | Kim, J.-K., Prasad, B. and Kim, S. (2017) Temperature Mapping and Thermal Dose Calculation in Combined Radiation Therapy and 13.56 MHz Radiofrequency Hyperthermia for Tumor Treatment. Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXVI, San Francisco, 28-29 January 2017, Article ID: 1004718. http://spie.org/publications/proceedings/paper/10.1117/12.2253163?origin_id=x4318 |
[34] | Tsang, Y.-W., Chi, K.-H., Huang, C.-C., Chi, M.-S., et al. (2019) Modulated Electro-Hyperthermia-Enhanced Liposomal Drug Uptake by Cancer Cells. International Journal of Nanomedicine, 14, 1269-1579. https://doi.org/10.2147/IJN.S188791 |
[35] | Balogh, L., Polyak, A., Postenyi, Z., et al. (2016) Temperature Increase Induced by Modulated Electrohyperthermia (Oncothermia®) in the Anesthetized Pig Liver. Journal of Cancer Research and Therapeutics, 12, 1153-1159. https://doi.org/10.4103/0973-1482.197561 |
[36] | Kovago, C.S., Meggyeshazi, N., Andocs, G. and Szasz, A. (2013) Report of the Pilot-Study Done for the Proposed Investigation on the Possible Synergic Effect Between High Dose Ascorbic Acid Application and Oncothermia Treatment. Hindawi Publishing Corporation Conference Papers in Medicine, 2013, Article ID: 386913. |
[37] | Wust, P., Veltsista, P.D., Oberacker, E., Yavvari, P., Walther, W., Bengtsson, O., et al. (2022) Radiofrequency Electromagnetic Fields Cause Non-Temperature-Induced Physical and Biological Effects in Cancer Cells. Cancers, 14, Article 5349. https://Www.Mdpi.Com/2072-6694/14/21/5349 |
[38] | Meggyeshazi, N., Andocs, G., Spisak, S., et al. (2013) Early Changes in MRNA and Protein Expression Related to Cancer Treatment by Modulated Electro-Hyperthermia. Hindawi Publishing Corporation Conference Papers in Medicine, 2013, Article ID: 249563. |
[39] | Prasad, B., Kim, S., Cho, W., et al. (2018) Effect of Tumor Properties on Energy Absorption, Temperature Mapping, and Thermal Dose in 13,56-MHz Radiofrequency Hyperthermia. Journal of Thermal Biology, 74, 281-289. https://doi.org/10.1016/j.jtherbio.2018.04.007 |
[40] | Andocs, G., Renner, H., Balogh, L., Fonyad, L., Jakab, C. and Szasz, A. (2009) Strong Synergy of Heat and Modulated Electro—Magnetic Field in Tumor Cell Killing, Study of HT29 Xenograft Tumors in a Nude Mice Model. Strahlentherapie Und Onkologie, 185, 120-126. https://doi.org/10.1007/s00066-009-1903-1 |
[41] | Danics, L., Schvarcz, C.S. and Zolcsak, Z. (2018) Modulated Electro Hyperthermia Inhibits Tumor Progression in a Triple Negative Mouse Breast Cancer Model. Oncothermia Journal, 24, 442-454. |
[42] | Thomas, M.B., Major, E., Benedek, A., Horváth, I., Máthé, D., Bergmann, R., et al. (2020) Suppression of Metastatic Melanoma Growth in Lung by Modulated Electro-Hyperthermia Monitored by a Minimally Invasive Heat Stress Testing Approach in Mice. Cancers, 12, Article 3872. Https://Pubmed.Ncbi.Nlm.Nih.Gov/33371498/ |
[43] | Schvarcz, C.S.A., Danics, L., Krenacs, T., Viana, P., Beres, R., et al. (2021) Modulated Electro-Hyperthermia Induces a Prominent Local Stress Response and Growth Inhibition in Mouse Breast Cancer Isografts. Cancers, 13, Article 1744. https://Pubmed.Ncbi.Nlm.Nih.Gov/33917524/ |
[44] | Matsumoto, Y., Hayshi, J., Sekino, Y., Fukumitsu, N., Saito, T., Ishikawa, H. and Sakurai, H. (2018) Radio-Sensitization Effect of Novel Cancer Therapy, Oncothermia ~ Toward Overcoming Treatment Resistance. 2018 Annual Conference of Japanese Hyperthermia Society, Fukui, 26-28 March 2018. |
[45] | Qin, W., Akutsu, Y., Andocs, G., et al. (2014) Modulated Electro-Hyperthermia Enhances Dendritic Cell Therapy Through an Abscopal Effect in Mice. Oncology Reports, 32, 2373-2379. https://doi.org/10.3892/or.2014.3500 |
[46] | Aloss, K., Bokhari, S.M.Z., Leroy Viana, P.H., Giunashvili, N., Schvarcz, C.A., SzénáSi, G., et al. (2024) Modulated Electro-Hyperthermia Accelerates Tumor Delivery and Improves Anticancer Activity of Doxorubicin Encapsulated in Lyso-Thermosensitive Liposomes in 4T1-Tumor-Bearing Mice. International Journal of Molecular Sciences, 25, Article 3101. https://doi.org/10.3390/ijms25063101 |
[47] | Son, B., Jeon, J., Lee, S., et al. (2019) Radiotherapy in Combination with Hyperthermia Suppresses Lung Cancer Progression via Increased NR4A3 and KLF11 Expression. International Journal of Radiation Biology, 95, 1696-1707. https://doi.org/10.1080/09553002.2019.1665213 |
[48] | Yang, W., Gwan, H.H., Shin, H.-Y., et al. (2018) Combined Treatment with Modulated Electro-Hyperthermia and an Autophagy Inhibitor Effectively Inhibit Ovarian and Cervical Cancer Growth. International Journal of Hyperthermia, 36, 9-20. https://doi.org/10.1080/02656736.2018.1528390 |
[49] | Andocs, G., Okamoto, Y., Kawamotot., Osaki, T., Tsuka, T., Imagawa, T., Minami, S., Balogh, L., Meggyeshazi, N. and Szasz, O. (2013) Oncothermia Basic Research at in Vivo Level. The First Results in Japan. Hindawi Publishing Corporation Conference Papers in Medicine, 2013, Article ID: 197328. |
[50] | Szasz, O. (2011) Temperature Measurements during Oncothermia (Collection of Temperature Measurements in Loco Regional Hyperthermia). Oncothermia Journal, 4, 62-86. |
[51] | Lee, S.-Y., Kim, J.-H., Han, Y.-H., et al. (2018) The Effect of Modulated Electro-Hyperthermia on Temperature and Blood Flow in Human Cervical Carcinoma. International Journal of Hyperthermia, 34, 953-960. https://doi.org/10.1080/02656736.2018.1423709 |
[52] | Meggyeshazi, N. (2015) Studies on Modulated Electrohyperthermia Induced Tumor Cell Death in a Colorectal Carcinoma Model. Ph.D Thesis, Semmelweis University. https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url= https://repo.lib.semmelweis.hu/bitstream/handle/123456789/3956/meggyeshazinora.e.pdf%3Fsequence%3D4&ved=2ahUKEwiesKr1p8KHAxWoHhAIHQVICa0QFnoECBIQAQ&usg=AOvVaw3tij1E3KOP_pDGIjoDDGLI |
[53] | Andocs, G., Rehman, M.U., Zhao, Q.-L., Tabuchi, Y., Kanamori, M. and Kondo, T. (2016) Comparison of Biological Effects of Modulated Electro-Hyperthermia and Conventional Heat Treatment in Human Lymphoma U937 Cell. Cell Death Discovery (Nature Publishing Group), 2, Article 16039. https://www.nature.com/articles/cddiscovery201639 |
[54] | Andocs, G. (2010) Revealing the Mechanism of Action of Modulated Electrothermia Experimentally in Animal Model (HT29 Colorectal Xenograft Study). Annual Meeting of Society for Thermal Medicine, Florida, 23-26 April, 2010. |
[55] | Szasz, A. (2022) Time-Fractal in Living Objects. Open Journal of Biophysics, 12, 1-26. https://doi.org/10.4236/ojbiphy.2022.121001 |
[56] | de Loof, M., de Jong, S. and Kruyt, F.A.E. (2019) Multiple Interactions Between Cancer Cells and the Tumor Microenvironment Modulate TRAIL Signaling: Implications for TRAIL Receptor Targeted Therapy. Frontiers in Immunology, 10, Article 1530. https://doi.org/10.3389/fimmu.2019.01530 |
[57] | de Andrade Mello, P., Bian, S., Savio, L.E.B., et al. (2017) Hyperthermia and Associated Changes in Membrane Fluidity Potentiate P2X7 Activation to Promote Tumor Cell Death. Oncotarget, 8, 67254-67268. https://doi.org/10.18632/oncotarget.18595 |
[58] | Meggyeshazi, N., Andocs, G., Spisak, S., et al. (2013) Modulated Electrohyperthermia Causes Caspase Independent Programmed Cell Death in HT29 Colon Cancer Xenografts. Virchows Archiv, 463, Article 329. |
[59] | Meggyeshazi, N., Andocs, G., Balogh, L. and Krenacs, T. (2011) DNA Fragmentation-Driven Tumor Cell Degradation Induced by Modulated Electro-Hyperthermia. Virchows Archiv, 459, S204-S205. |
[60] | Yang, K.-L., Huang, C.-C., Chi, M.-S., Chiang, H.-C., Wang, Y.-S., Andocs, G., et al. (2016) In Vitro Comparison of Conventional Hyperthermia and Modulated Electro-Hyperthermia. Oncotarget, 7, 84082-84092. Http://Www.Ncbi.Nlm.Nih.Gov/Pubmed/27556507 |
[61] | Springer, M. and Paulsson, J (2006) Harmonies From Noise. Nature, 439, 27-28. https://doi.org/10.1038/439027a |
[62] | West, J.B. (2013) Fractal Physiology and Chaos in Medicine. World Scientific. https://doi.org/10.1142/8577 |
[63] | Astumian, R.D. and Chock, P.B. (1989) Effects of Oscillations and Energy-Driven Fluctuations on the Dynamics of Enzyme Catalysis and Free-Energy Transduction. Physical Review A, 39, 6416-6435. https://doi.org/10.1103/PhysRevA.39.6416 |
[64] | O’Neill, D.P., Peng, T., Stiegler, P., Mayrhauser, U., Koestenbauer, S., Tscheliessnigg, K., et al. (2011) A Three-State Mathematical Model of Hyperthermic Cell Death. Annals of Biomedical Engineering, 39, 570-579. https://doi.org/10.1007/s10439-010-0177-1 |
[65] | Kiss, E., Andocs, G., Meggyeshazi, N., Vancsik, T., Kovago, C.S., Papp, E. and Krenacs, T. (2015) The Role of Modulation in Modulated Electro-Hyperthermia (MEHT). 36th Conference of International Clinical Hyperthermia Society (ICHS), Bad Salzhausen, July 10 2015. https://doi.org/10.1016/j.eujim.2016.08.087 |
[66] | Szasz, O., Andocs, G. and Meggyeshazi, N. (2013) Modulation Effect in Oncothermia. Hindawi Publishing Corporation Conference Papers in Medicine, 2013, Article ID: 395678. |
[67] | Forika, G., Balogh, A., Vancsik, T., Zalatnai, A., et al. (2020) Modulated Electro-Hyperthermia Resolves Radioresistance of Panc1 Pancreas Adenocarcinoma and Promotes DNA Damage and Apoptosis in Vitro. International Journal of Molecular Sciences, 21, Article 5100. https://doi.org/10.3390/ijms21145100 |
[68] | Andocs, G., Okamoto, Y., Kawamotot, K., Osaki, T., Tsuka, T., Imagawa, T., Minami, S., Balogh, L., Meggyeshazi, N. and Szasz, O. (2013) Oncothermia Basic Research at in vivo Level. The First Results in Japan. Oncothermia Journal, 7, 296-300. https://doi.org/10.1155/2013/197328 |
[69] | Plotnikov, A., Fishman, D., Tichler, T., Korenstein, R. and Keisari, Y. (2004) Low Electric Field Enhanced Chemotherapy Can Cure Mice with CT-26 Colon Carcinoma and Induce Anti-Tumor Immunity. Clinical and Experimental Immunology, 138, 410-416. https://doi.org/10.1111/j.1365-2249.2004.02636.x |
[70] | Kirson, E.D., Schneiderman, R.S., Dbaly, V., et al. (2009) Chemotherapeutic Treatment Efficacy and Sensitivity Are Increased by Adjuvant Alternating Electric Fields (TTFields). BMC Medical Physics, 9, Article No. 1. https://doi.org/10.1186/1756-6649-9-1 |
[71] | Schneiderman, R.S., Shmueli, E., Kirson, E.D. and Palti, Y. (2010) TTFields Alone and in Combination with Chemotherapeutic Agents Effectively Reduce the Viability of MDR Cell Sub-Lines that Over-Express ABC Transporters. BMC Cancer, 10, Article 229. https://doi.org/10.1186/1471-2407-10-229 |
[72] | Needham, D., Anyarambhatla, G., Kong, G. and Dewhirst, M.W. (2000) A New Temperature-Sensitive Liposome for Use with Mild Hyperthermia: Characterization and Testing in a Human Tumor Xenograft Model. Cancer Research, 60, 1197-201. |
[73] | Balogh, L., Andocs, G., Thuroczy, J., Polyak, A., Szasz, O. and Szasz, A. (2009) Oncological and Non-Oncological Applications of Electromagnetic Hyperthermia (Oncothermia) in the Veterinary Clinics—2 Years of Experience. Poster Presentation at 1 International es Oncothermie-Symposium, Köln, 22-23 November 2009. |