All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Dynamic Modelling of a Hybrid Variable Reluctance Machine Using the 3D Finite Element Method

DOI: 10.4236/jemaa.2024.167007, PP. 103-113

Keywords: Numerical Computing, Complex Dynamic, Flux Linkage, 3D Effects, Equilibrium Position

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents the work carried out to evaluate the dynamic performance of the Hybrid Variable Reluctance Motor (HVRM). The fourth-order Runge-Kutta integration algorithm was employed to solve the equations of the dynamic model, in conjunction with the three-dimensional finite element method. The 3D numerical data was calculated using Comsol Multiphysics, which accounts for the nonlinearity of the ferromagnetic material and the 3D nature of the HVRM. The outcomes of this study are precise and accurately predict the dynamic behaviour of the HVRM in terms of rotor position response, rotational speed and torque. The distinctive contribution of this work lies in the 3D numerical modelling of the HVRM and the subsequent evaluation and analysis of its dynamic operation. Analytical and numerical 2D studies are less resource-intensive and time-consuming, and are more straightforward and rapid to analyse and interpret. However, they are constrained in their capacity to examine spatial, volumetric interactions and intricate dynamics such as flux studies where three 3D effects cannot be disregarded, winding end effects and the configuration and positioning of the interposed permanent magnet.

References

[1]  Husain, I. and Ehsani, M. (1996) Torque Ripple Minimization in Switched Reluctance Motor Drives by PWM Current Control. IEEE Transactions on Power Electronics, 11, 83-88.
https://doi.org/10.1109/63.484420
[2]  Moulton, B. (1994) Conception et alimentation électronique des machines à réluctance variable à double saillance. Chez Technical Report, HDR, École Normale Supérieure.
[3]  Kada, B.N. (2015) Contribution à la modélisation par la méthode des réseaux des reluctance. Thèse de Doctorat, Université d’Oran Mohamed Boudiaf.
[4]  Idir, K., Chang, L. and Dai, H. (1998) Improved Neural Network Model for Induction Motor Design. IEEE Transactions on Magnetics, 34, 2948-2951.
https://doi.org/10.1109/20.717688
[5]  Fankem, E.D.K., Takorabet, N., Meibody‐Tabar, F. and Michel Sargos, F. (2010) Non Linear Finite Element‐Circuit Model of a Hybrid Stepping Motor. COMPELThe International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 29, 957-963.
https://doi.org/10.1108/03321641011044370
[6]  Guidkaya, G. (2018) Machine à réluctance variable: Approches par la commande et par la structure pour un fonctionnement pas à pas en hautes fréquences de commutation. Thèse de Doctorat, Université de Ngaoundéré.
[7]  Thamir, H.A. (2018) Various Control Strategies on Torque Ripple Minimization for Switched Reluctance Motor. IOP Conference Series: Materials Science and Engineering, 454, Article ID: 012085.
https://doi.org/10.1088/1757-899X/454/1/012085
[8]  Hilaire, B.D. (2019) Méthodes des éléments finis 3D et le couple de denture d’une machine à réluctance variable hybride. Editions Universitaires Européennes.
[9]  Faiz, J. and Finch, J.W. (1993) Aspects of Design Optimisation for Switched Reluctance Motors. IEEE Transactions on Energy Conversion, 8, 704-713.
https://doi.org/10.1109/60.260984
[10]  Lim, K.-C., Hong, J.-P. and Kim, G.-T. (2001) Characteristic Analysis of 5-Phase Hybrid Stepping Motor Considering the Saturation Effect. IEEE Transactions on Magnetics, 37, 3518-3521.
https://doi.org/10.1109/20.952651
[11]  Lawrenson, P.J., Stephenson, J.M., Fulton, N.N., Blenkinsop, P.T. and Corda, J. (1980) Variable-Speed Switched Reluctance Motors. IEE Proceedings B Electric Power Applications, 127, 253-265.
https://doi.org/10.1049/ip-b.1980.0034
[12]  Moallem, M. and Ong, C.-M. (1990) Predicting the Torque of a Switched Reluctance Machine from Its Finite Element Field Solution. IEEE Transactions on Energy Conversion, 5, 733-739.
https://doi.org/10.1109/60.63147
[13]  Sadowski, N. (1993) Modélisation des machines électriques à partir de la résolution des équations du champ en tenant compte du mouvement et du circuit d’alimentation (Logiciel EFCAD). Thèse de Doctorat, Toulouse INP.
[14]  Zhou, P., Gilmore, J., Badics, Z. and Cendes, Z.J. (1998) Finite Element Analysis of Induction Motors Based on Computing Detailed Equivalent Circuit Parameters. IEEE Transactions on Magnetics, 34, 3499-3502.
https://doi.org/10.1109/20.717825
[15]  Kavanagh, R., Murphy, J. and Egan, M. (1991) Torque Ripple Minimization in Switched Reluctance Drives Using Self-Learning Techniques. 1991 International Conference on Industrial Electronics, Control and Instrumentation, Kobe, 28 October-1 November 1991, 289-294.
https://doi.org/10.1109/IECON.1991.239292
[16]  Redjem, R. (2010) Modélisation et optimisation d’une structure de machine à réluctance variable dédiée aux énergies renouvelables. Thèses de Doctorat, Université Mentouri de Constantine.
[17]  Belghith, S. (1997) Méthodes algébriques et numériques pour l’étude de comportements complexes de systèmes non linéaires. Thèse de Doctorat, Faculté des Sciences de Tunis.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133